Numerische Mathematik

, Volume 102, Issue 4, pp 681–708 | Cite as

Two-scale composite finite element method for Dirichlet problems on complicated domains

  • M. RechEmail author
  • S. Sauter
  • A. Smolianski


In this paper, we define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary. Numerical experiments confirm the theoretical results and show the potential of our proposed method.

Mathematics Subject Classification (2000)

35J20 65N15 65N30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bank, R.E., Xu, J.: An Algorithm for Coarsening Unstructured Meshes. Numer. Math. 73(1), 1–36 (1996)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brenner, S., Scott, L.R.: The mathematical theory of finite element methods, Springer, 2002Google Scholar
  3. 3.
    Ciarlet, P.: The finite element method for elliptic problems. North-Holland, 1987Google Scholar
  4. 4.
    Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75(4), 447–472 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hackbusch, W., Sauter, S.: Composite finite elements for problems containing small geometric details. Part II: Implementation and numerical results. Computing and Visualization in Science 1(1), 15–25 (1997)Google Scholar
  6. 6.
    Kornhuber, R., Yserentant, H.: Multilevel Methods for Elliptic Problems on Domains not Resolved by the Coarse Grid. Contemporary Mathematics 180, 49–60 (1994)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Rech, M.: Composite finite elements: An adaptive two-scale approach to the non-conforming approximation of Dirichlet problems on complicated domains, PhD thesis, Universität Zürich (planned for 2006)Google Scholar
  8. 8.
    Rech, M., Repin, S., Sauter, S., Smolianski, A.: Composite finite elements for the Dirichlet problem with an a-posteriori controlled, adaptive approximation of the boundary condition (planned for 2006)Google Scholar
  9. 9.
    Repin, S., Sauter, S., Smolianski, A.: A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70, 205–233 (2003)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Sauter, S., Warnke, R.: Extension operators and approximation on domains containing small geometric details. East-West J. Numer. Math. 7(1), 61–78 (1999)MathSciNetGoogle Scholar
  11. 11.
    Stein, E.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, 1970Google Scholar
  12. 12.
    Strang, G., Fix. G.J.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973Google Scholar
  13. 13.
    Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester, 1996Google Scholar
  14. 14.
    Yserentant, H.: Coarse grid spaces for domains with a complicated boundary. Numerical Algorithms 21, 387–392 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing 56, 215–235 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations