Skip to main content
Log in

Approximate Interpolation with Applications to Selecting Smoothing Parameters

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the global behavior of a function that is known to be small at a given discrete data set. Such a function might be interpreted as the error function between an unknown function and a given approximant. We will show that a small error on the discrete data set leads under mild assumptions automatically to a small error on a larger region. We will apply these results to spline smoothing and show that a specific, a priori choice of the smoothing parameter is possible and leads to the same approximation order as the classical interpolant. This has also a surprising application in stabilizing the interpolation process by splines and positive definite kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselone, P.M., Laurent, P.J.: A general method for the construction of interpolating or smoothing spline-functions. Numer. Math. 12, 66–82 (1968)

    Article  Google Scholar 

  2. Brenner, S., Scott, L.: The mathematical theory of finite element methods. Springer, New York, 1994

  3. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R. McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Computer graphics proceedings, annual conference series, Addison Wesley, 2001, pp. 67–76

  4. Cox, D.D.: Multivariate smoothing spline functions. SIAM J. Numer. Anal. 21, 789–813 (1984)

    Article  Google Scholar 

  5. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979)

    Article  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, 2000

  7. Cucker, F., Smale, S.: On the mathematical foundation of learning. Bull. Amer. Math. Soc. 39, 1–49 (2001)

    Article  Google Scholar 

  8. de Boor, C.: A practical guide to splines. Springer, New York, revised ed., 2001

  9. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive theory of functions of several variables, Schempp, W., Zeller, K. (eds.) Berlin, Springer, 1977, pp. 85–100,

  10. Duchon, J., Sur l'erreur d'interpolation des fonctions de plusieurs variables par les Dm-splines. Rev. Française Automat. Informat. Rech. Opér. Anal. Numer. 12, 325–334 (1978)

  11. Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines. Adv. Comput. Math. 13, 1–50 (2000)

    Article  Google Scholar 

  12. Golitschek, M.V., Schumaker, L.L.: Data fitting by penalized least squares. In: Algorithms for approximation II, Mason, C., Cox, M.G. (eds.), London, Chapman and Hall, 1990, pp. 210–227

  13. Kersey, S.N.: Near-interpolation. Numer. Math. 94 523–540 (2003)

  14. Kersey, S.N., On the problem of smoothing and near-interpolation. Math. Comput. 72, 1873–1895 (2003)

    Google Scholar 

  15. Narcowich, F.J., Ward, J.D. (1991) Norms of inverses and condition numbers for matrices associated with scattered data. J. Approx. Theory 64, 69–94 (1991)

    Google Scholar 

  16. Narcowich, F.J., Norms of inverses for matrices associated with scattered data. In: Curves and surfaces, Laurent, P.-J., Méhauté, A.L., Schumaker, L.L. (eds.), Boston, Academic Press, 1991, pp. 341–348

  17. Narcowich, F.J., Norm estimates for the inverse of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory, 69, 84–109 (1992)

    Google Scholar 

  18. Narcowich, F.J., On condition numbers associated with radial-function interpolation. J. Math. Anal. Appl. 186, 457–485 (1994)

    Google Scholar 

  19. Narcowich, F.J., Scattered-data interpolation on ℝn: Error estimates for radial basis and band-limited functions. SIAM J. Math. Anal. 36, 284–300 (2004)

    Article  Google Scholar 

  20. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 643–763 (2005)

    Google Scholar 

  21. Ragozin, D.L.: Error bounds for derivative estimates based on spline smoothing of exact or noisy data. J. Approx. Theory 37, 335–355 (1983)

    Article  Google Scholar 

  22. Reinsch, C.H.: Smoothing by spline functions. Numer. Math. 10, 177–183 (1967)

    Article  Google Scholar 

  23. Reinsch, C.H.: Smoothing by spline functions II. Numer. Math. 16, 451–454 (1971)

    Article  Google Scholar 

  24. Schaback, R.: Error estimates and condition number for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Google Scholar 

  25. Schoenberg, I.J.: Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. (USA) 52, 947–950 (1964)

    Google Scholar 

  26. Schölkopf, B., Smola, A.J.: Learning with kernels – support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, Massachusetts, 2002

  27. Schultz, M.H.: Error bounds for polynomial spline interpolation. Math. Comput. 24, 507–515 (1970)

    Google Scholar 

  28. Schumaker, L.L.: Spline functions - basic theory. Wiley-Interscience Publication, New York, 1981

  29. Wahba, G.: Smoothing noisy data by spline functions. Numer. Math. 24, 383–393 (1975)

    Article  Google Scholar 

  30. Wahba, G., Spline models for observational data. CBMS-NSF, Regional Conference Series in Applied Mathematics, Siam, Philadelphia, 1990

  31. Wei, T., Hon, Y., Wang, Y.B.: Reconstruction of numerical derivatives from scattered noisy data. Inverse Problems 21, 657–672 (2005)

    Article  MathSciNet  Google Scholar 

  32. Wendland, H.: Scattered data approximation. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Wendland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendland, H., Rieger, C. Approximate Interpolation with Applications to Selecting Smoothing Parameters. Numer. Math. 101, 729–748 (2005). https://doi.org/10.1007/s00211-005-0637-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0637-y

Mathematics Subject Classification (2000)

Navigation