Advertisement

Numerische Mathematik

, Volume 101, Issue 3, pp 391–414 | Cite as

Mesh optimization for singular axisymmetric harmonic maps from the disc into the sphere

  • François Alouges
  • Morgan PierreEmail author
Article

Abstract

We describe in a mathematical setting the singular energy minimizing axisymmetric harmonic maps from the unit disc into the unit sphere; then, we use this as a test case to compute optimal meshes in presence of sharp boundary layers. For the well-posedness of the continuous minimizing problem, we introduce a lower semicontinuous extension of the energy with respect to weak convergence in BV, and we prove that the extended minimization problem has a unique singular solution. We then show how a moving finite element method, in which the mesh is an unknown of the discrete minimization problem obtained by finite element discretization, mimics this geometric point of view. Finally, we present numerical computations with boundary layers of zero thickness, and we give numerical evidence of the convergence of the method. This last aspect is proved in another paper.

Mathematics Subject Classification (2000)

65N50 58E20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, R., Manselli, P., Miller, K.: Moving finite elements for the Stefan problem in two dimensions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 67(1–2), 57–61 (1979)Google Scholar
  2. 2.
    Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)MathSciNetGoogle Scholar
  3. 3.
    Brezis, H., Coron J.-M.: Large solutions for harmonic maps in two dimensions. Commun. Math. Phys. 92(2), 203–215 (1983)MathSciNetGoogle Scholar
  4. 4.
    Carlson, N., Miller, K.: Design and application of a gradient-weighted moving finite element code I: in one dimension. SIAM J. Sci. Comput. 19, 728–765 (1998)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Coron, J.-M., Ghidaglia, J.-M. (eds.): Nematics, volume 332 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Dordrecht, 1991. Kluwer Academic Publishers GroupGoogle Scholar
  6. 6.
    De Gennes, P.-G., Prost, J.: The Physics of liquid crystals. Clarendon Press, Oxford, 1993Google Scholar
  7. 7.
    Delfour, M., Payre, G., Zolesio, J.P. An optimal triangulation for second-order elliptic problems. Comput. Methods Appl. Mech. Engrg. 50, 231–261 (1985)Google Scholar
  8. 8.
    Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations I. Springer-Verlag Berlin, 1998Google Scholar
  9. 9.
    Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations II. Springer-Verlag, Berlin, 1998Google Scholar
  10. 10.
    Hardt, R.: Singularities of harmonic maps. Bull. Am. Math. Soc. (N.S.) 34(1), 15–34 (1997)MathSciNetGoogle Scholar
  11. 11.
    Hardt, R., Lin, F.-H., Poon, C.-C.: Axially symmetric harmonic maps minimizing a relaxed energy. Commum. Pure Appl. Math. 45(4), 417–459 (1992)MathSciNetGoogle Scholar
  12. 12.
    Hülsemann, F., Tourigny, Y.: A new moving mesh algorithm for the finite element solution of variational problems. SIAM J. Numer. Anal. 35, 1416–1438 (1998)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Jäger, W., Kaul, H.: Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems. J. Reine Angew. Math. 343, 146–161 (1983)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Li, R., Tang, T., Zhang, P.-W.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pierre, M.: Graphes et maillages adaptés pour le calcul d'applications harmoniques minimisantes. PhD thesis, ENS Cachan France, 2002Google Scholar
  16. 16.
    Pierre, M.: Weak BV convergence of a moving finite element method for singular axisymmetric harmonic maps. SIAM J. Numer. Anal. (to appear)Google Scholar
  17. 17.
    Polak, E.: Optimization, volume 124 of Applied Mathematical Sciences, Springer-Verlag, New York, 1997Google Scholar
  18. 18.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics, Springer-Verlag, New-York, 2000Google Scholar
  19. 19.
    Rippa, S., Schiff, B.: Minimum energy triangulations for elliptic problems. Comput. Methods Appl. Mech. Engrg. 84, 257–274 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Soyeur, A.: The Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. Roy. Soc. Edinburgh Sect. A. 113, 229–234 (1989)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité Paris-XIOrsay CedexFrance
  2. 2.Laboratoire de MathématiquesUniversité de PoitiersFuturoscope CedexFrance

Personalised recommendations