Skip to main content
Log in

Worst case scenario analysis for elliptic problems with uncertainty

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work studies linear elliptic problems under uncertainty. The major emphasis is on the deterministic treatment of such uncertainty. In particular, this work uses the Worst Scenario approach for the characterization of uncertainty on functional outputs (quantities of physical interest). Assuming that the input data belong to a given functional set, eventually infinitely dimensional, this work proposes numerical methods to approximate the corresponding uncertainty intervals for the quantities of interest. Numerical experiments illustrate the performance of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guide for Verification and Validation of Computational Fluid dynamics simulation. Technical Report AIAA G-077-1998, American Institute of Aeronautics and Astronautics, 1998

  2. Ainsworth, M., Oden, J-T.: A posteriori Error Estimation in Finite Element Analysis. Wiley, 2000

  3. Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions. Math. Comp. 71(240), 1339–1370 (electronic) (2002)

    Article  Google Scholar 

  4. Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems. Numer. Math. 93(4), 583–610 (2003)

    Article  Google Scholar 

  5. Babuška, I., Oden, J.T.: Verification and validation in computational engineering and science. Part I: Basic concepts. Comp. Meth. Appl. Mech. Engrg. 193, 4057-4066 (2004)

    Article  Google Scholar 

  6. Babuška, I., Stroboulis, T.: The Finite Element Method and its Reliability. Oxford Sci. Publ., 2001

  7. Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003

  8. Ben-Haim, Y.: Information-gap decision theory. Series on Decision and Risk. Academic Press Inc., San Diego CA, 2001. Decisions under severe uncertainty

  9. Ben-Haim, Y., Elishakoff, I.: Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam, 1990

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer–Verlag, 1994

  11. Brezis, H.: Analyse fonctionnelle: Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, 1983

  12. Cacuci, D.: Sensitivity and Uncertainty analysis: theory. Volume 1. Chapman & Hall 2003

  13. Achenbach, J., Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain input data problems and the worst scenario method. Elsevier, 2004

  14. National Research Council. Science and Judgment in Risk Assessment. National Academy Press, 1994

  15. Cullen, A.C., Frey, H.Ch.: Probabilistic Techniques Exposure Assessment. Plenum Press, 1999

  16. Elishakoff, I.: Probabilistic Methods in the Theory of Structures. Dover, Second edition, 1999

  17. Elishakoff, I. (ed.): Whys and hows in uncertainty modelling. Springer–Verlag, 1999

  18. Evans, L.: Partial Differential Equations. Volume 19 of Graduate Studies in Mathematics. AMS, 1998

  19. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (6):1756–1778 (electronic), 2001.

    Google Scholar 

  20. Helton, J.C.: Analysis in the presence of stochastic and subjective uncertainties. J. Stochastical Computations and Simulations 57, 3–76 (1997)

    Google Scholar 

  21. Helton, J.C.: Uncertainty and Sensitivity Analysis in performance assessment for waste isolation Plant. Comput. Phys. Commun. 117, 156–180 (1999)

    Article  Google Scholar 

  22. Machiels, L., Maday, Y., Patera, A.T.: A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 330(3), 249–254 (2000)

    Google Scholar 

  23. Melchers, R.E.: Structural Reliability Analysis and Prediction. Wiley, 1999

  24. Modarres, M., What Every Engineer Should know about Reliability and Risk Analysis. Dekker, 1993

  25. Moon, K.-S., Von Schwerin, E., Szepessy, A., Tempone, R.: Convergence Rates for an adaptive dual weighted residual finite element algorithm. ICES Report 04-19, ICES University of Texas at Austin, April 2004

  26. Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences 38, 209–272 (2002)

    Article  Google Scholar 

  27. Oberkampf, W.L., Trucano, T.G., Hirsch, Ch.: Verification, validation and predictive capabilities in computational engineering and physics. SANDIA Report SAND2003-3769, Sandia National Laboratories, 2003

  28. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)

    Google Scholar 

  29. Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182, 496–515 (2002)

    Article  Google Scholar 

  30. Oden, J.T., Prudhomme, S., Hammerand, D.C., Kuczma, M.S.: Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Meth. Appl. Mech. Engrg. 190, 6663–6684 (2001)

    Article  Google Scholar 

  31. Pironneau, O.: Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer-Verlag, New York, 1984

  32. Ramsey, Ch.B., Modarres, M.: Commercial Nuclear Power. Assuring Safety for the Future. Wiley, 1997

  33. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998

  34. Spanos, P.D., Deodatis, D. (eds.): Computational Stochastic Mechanics. Proceeding of the Fourth International Conference on Computational Mechanics, Corfu Greece June 9–12, 2002. Millpress, 2003

  35. Szabó, B., Babuška, I.: Finite element analysis. Wiley, New York, 1991

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nobile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babuška, I., Nobile, F. & Tempone, R. Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101, 185–219 (2005). https://doi.org/10.1007/s00211-005-0601-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0601-x

Mathematics Subject Classification (2000)

Navigation