Abstract
This work studies linear elliptic problems under uncertainty. The major emphasis is on the deterministic treatment of such uncertainty. In particular, this work uses the Worst Scenario approach for the characterization of uncertainty on functional outputs (quantities of physical interest). Assuming that the input data belong to a given functional set, eventually infinitely dimensional, this work proposes numerical methods to approximate the corresponding uncertainty intervals for the quantities of interest. Numerical experiments illustrate the performance of the proposed methodology.
Similar content being viewed by others
References
Guide for Verification and Validation of Computational Fluid dynamics simulation. Technical Report AIAA G-077-1998, American Institute of Aeronautics and Astronautics, 1998
Ainsworth, M., Oden, J-T.: A posteriori Error Estimation in Finite Element Analysis. Wiley, 2000
Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions. Math. Comp. 71(240), 1339–1370 (electronic) (2002)
Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems. Numer. Math. 93(4), 583–610 (2003)
Babuška, I., Oden, J.T.: Verification and validation in computational engineering and science. Part I: Basic concepts. Comp. Meth. Appl. Mech. Engrg. 193, 4057-4066 (2004)
Babuška, I., Stroboulis, T.: The Finite Element Method and its Reliability. Oxford Sci. Publ., 2001
Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003
Ben-Haim, Y.: Information-gap decision theory. Series on Decision and Risk. Academic Press Inc., San Diego CA, 2001. Decisions under severe uncertainty
Ben-Haim, Y., Elishakoff, I.: Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam, 1990
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer–Verlag, 1994
Brezis, H.: Analyse fonctionnelle: Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, 1983
Cacuci, D.: Sensitivity and Uncertainty analysis: theory. Volume 1. Chapman & Hall 2003
Achenbach, J., Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain input data problems and the worst scenario method. Elsevier, 2004
National Research Council. Science and Judgment in Risk Assessment. National Academy Press, 1994
Cullen, A.C., Frey, H.Ch.: Probabilistic Techniques Exposure Assessment. Plenum Press, 1999
Elishakoff, I.: Probabilistic Methods in the Theory of Structures. Dover, Second edition, 1999
Elishakoff, I. (ed.): Whys and hows in uncertainty modelling. Springer–Verlag, 1999
Evans, L.: Partial Differential Equations. Volume 19 of Graduate Studies in Mathematics. AMS, 1998
Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (6):1756–1778 (electronic), 2001.
Helton, J.C.: Analysis in the presence of stochastic and subjective uncertainties. J. Stochastical Computations and Simulations 57, 3–76 (1997)
Helton, J.C.: Uncertainty and Sensitivity Analysis in performance assessment for waste isolation Plant. Comput. Phys. Commun. 117, 156–180 (1999)
Machiels, L., Maday, Y., Patera, A.T.: A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 330(3), 249–254 (2000)
Melchers, R.E.: Structural Reliability Analysis and Prediction. Wiley, 1999
Modarres, M., What Every Engineer Should know about Reliability and Risk Analysis. Dekker, 1993
Moon, K.-S., Von Schwerin, E., Szepessy, A., Tempone, R.: Convergence Rates for an adaptive dual weighted residual finite element algorithm. ICES Report 04-19, ICES University of Texas at Austin, April 2004
Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences 38, 209–272 (2002)
Oberkampf, W.L., Trucano, T.G., Hirsch, Ch.: Verification, validation and predictive capabilities in computational engineering and physics. SANDIA Report SAND2003-3769, Sandia National Laboratories, 2003
Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)
Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182, 496–515 (2002)
Oden, J.T., Prudhomme, S., Hammerand, D.C., Kuczma, M.S.: Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Meth. Appl. Mech. Engrg. 190, 6663–6684 (2001)
Pironneau, O.: Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer-Verlag, New York, 1984
Ramsey, Ch.B., Modarres, M.: Commercial Nuclear Power. Assuring Safety for the Future. Wiley, 1997
Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998
Spanos, P.D., Deodatis, D. (eds.): Computational Stochastic Mechanics. Proceeding of the Fourth International Conference on Computational Mechanics, Corfu Greece June 9–12, 2002. Millpress, 2003
Szabó, B., Babuška, I.: Finite element analysis. Wiley, New York, 1991
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Babuška, I., Nobile, F. & Tempone, R. Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101, 185–219 (2005). https://doi.org/10.1007/s00211-005-0601-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0601-x