Advertisement

Numerische Mathematik

, Volume 99, Issue 2, pp 325–348 | Cite as

A posteriori error estimator for the eigenvalue problem associated to the Schrödinger operator with magnetic field

  • Virginie Bonnaillie NoëlEmail author
Article

Summary.

The ground state for the Neumann realization of the Schrödinger operator for constant and sufficiently large magnetic field presents a localization in the boundary of the domain and particularly in the corners where the angle is minimum. As the solution decreases exponentially fast away of the corner, it is rather difficult to catch it numerically. A natural idea is to try using a mesh refinement method coupled to a posteriori error estimates. The purpose of this paper is to provide such an estimator adapted to the problem.

Keywords

Magnetic Field Error Estimate Mathematical Method Eigenvalue Problem Error Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alouges, F., Bonnaillie, V.: Analyse numérique de la supraconductivité. C. R. Math. Acad. Sci. Paris 337-8, 543–548 (2003)Google Scholar
  2. 2.
    Babuska, I.: Feedback, adaptivity, and a posteriori estimates in finite elements : aims, theory, and experience. Accuracy Estimates and Adaptative Refinements in Finite Elements Computation (Wiley, New-York, 1986) pp. 3–23Google Scholar
  3. 3.
    Babuška, I., Osborn, J.: Eigenvalue problems. Handbook of numerical analysis, Vol. II (North-Holland, Amsterdam, 1991) pp. 641–787Google Scholar
  4. 4.
    Babuska, I., Rheinboldt, W.C.: A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Engrg. 12, 1597–1615 (1978)zbMATHGoogle Scholar
  5. 5.
    Bernardi, C., Métivet, B.: Indicateurs d’erreur pour l’équation de la chaleur. Rev. Eur. Elem. Finis 9-4, 423–438 (2000)Google Scholar
  6. 6.
    Bernardi, C., Métivet, B., Verfürth, R.: Analyse numérique d’indicateurs d’erreur. Report 93025, Université Pierre et Marie Curie, Paris VI (1993)Google Scholar
  7. 7.
    Bernoff, A., Sternberg, P.: Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39-3, 1272–1284 (1998)Google Scholar
  8. 8.
    Bonnaillie, V.: On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners. C. R. Acad. Sci. Paris 336-2, 135–140 (2003)Google Scholar
  9. 9.
    Bonnaillie, V.: On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners. Accepted for publication in Asymptot. Anal. (2004)Google Scholar
  10. 10.
    Bonnaillie, V.: Superconductivity in general domains. Submitted, (2004)Google Scholar
  11. 11.
    Bonnaillie, V.: Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques. Thèse, Université Paris XI, Orsay, (2003)Google Scholar
  12. 12.
    Braess, D.: Finite elements. (Cambridge University Press, 2001)Google Scholar
  13. 13.
    Brosens, F., Devreese, J.T., Fomin, V.M., Moshchalkov, V.V.: Superconductivity in a wedge : analytical variational results. Solid State Comm. 111-12, 565–569 (1999)Google Scholar
  14. 14.
    Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. Handbook of numerical analysis, Vol. V, (North-Holland, Amsterdam, 1997) pp. 487–637Google Scholar
  15. 15.
    Clément, P.: Approximation by finite element functions using local regularization. R. A. I. R.O. R-2, 77–84 (1975)Google Scholar
  16. 16.
    Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185, 604–680 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Heuveline, V., Rannacher, R.: A posteriori error control for finite approximations of elliptic eigenvalue problems. A posteriori error estimation and adaptive computational methods. Adv. Comput. Math. 15, 1-4, 107–138 (2001)Google Scholar
  18. 18.
    Hornberger, K., Smilansky, U.: The boundary integral method for magnetic billiards. J. Phys. A : Math. Gen. 33, 2829–2855 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jadallah, H-T.: The Onset of superconductivity in a domain with a corner. Ph. D. Indiana University (2001).Google Scholar
  20. 20.
    Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38-2, 608–625 (2000)Google Scholar
  21. 21.
    Lu, K., Pan, X-B.: Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127, 73–104 (1999)zbMATHGoogle Scholar
  22. 22.
    Maday, Y., Turinici, G.: Numerical analysis of the adiabatic variable method for the approximation of the nuclear Hamiltonian. M2AN Math. Model. Numer. Anal. 35-4, 779–798 (2001)Google Scholar
  23. 23.
    Maday, Y., Patera, A.T., Peraire, J.: A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem. C. R. Acad. Sci. Paris Sér. I Math. 328-9, 823–828 (1999)Google Scholar
  24. 24.
    Pan, X.B.: Upper Critical Field for superconductors with edges and corners. Calc. Var. Partial Differential Equations 14, 447–482 (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Scott, L.R., Zhang, S.: Finite elements interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54,190, 483–493 (1990)zbMATHGoogle Scholar
  26. 26.
    Schweigert, V.A., Peeters, F.M.: Influence of the confinement geometry on surface superconductivity. Phys. Rev. B 60-5, 3084–3087 (1999)Google Scholar
  27. 27.
    Verfürth, R.: A review of a posteriori error estimation and adaptative mesh rafinement technique. (Wiley Teubner, 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Département de MathématiqueUniversité Paris-SudOrsay CedexFrance

Personalised recommendations