Advertisement

Numerische Mathematik

, Volume 99, Issue 2, pp 225–249 | Cite as

Averaging techniques yield reliable a posteriori finite element error control for obstacle problems

  • S. Bartels
  • C. CarstensenEmail author
Article

Summary.

The reliability of frequently applied averaging techniques for a posteriori error control has recently been established for a series of finite element methods in the context of second-order partial differential equations. This paper establishes related reliable and efficient a posteriori error estimates for the energy-norm error of an obstacle problem on unstructured grids as a model example for variational inequalities. The surprising main result asserts that the distance of the piecewise constant discrete gradient to any continuous piecewise affine approximation is a reliable upper error bound up to known higher order terms, consistency terms, and a multiplicative constant.

Keywords

Finite Element Method Variational Inequality Posteriori Error Error Control Unstructured Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. John Wiley & Sons, xx+240, 2000Google Scholar
  2. 2.
    Alberty, J.: Carsten Carstensen and Stefan A. Funken. Remarks around 50 lines of Matlab: short finite element implementation. Numer Algorithms 20(2–3), 117–137 (1999)Google Scholar
  3. 3.
    Babuška, I., Strouboulis, T.: The finite element method and its reliability. Oxford University Press, xii+802, 2001Google Scholar
  4. 4.
    Bartels, S., Carstensen, C.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: higher order FEM. Math. Comp. 71(239), 971–994 (2002)zbMATHGoogle Scholar
  5. 5.
    Bartels, S.: Carsten Carstensen and Georg Dolzmann. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. (in press). Preprint available at http://www.numerik.uni-kiel.de/reports/2002/02-1.html
  6. 6.
    Blum, H., Suttmeier, F-T.: Weighted error estimates for finite element solutions of variational inequalities. Computing 65(2), 119–134 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brenner, S.C., L. Ridgway Scott. The mathematical theory of finite element methods. Springer Verlag, New York, 15, xii+294, 1994Google Scholar
  8. 8.
    Carstensen, C.: Quasi interpolation and a posteriori error analysis in finite element method. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)Google Scholar
  9. 9.
    Carstensen, C.: All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comp. 73(247), 1153–1165 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Carstensen, C., Alberty, J.: Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening. Comput. Methods Appl. Mech. Engrg. 192(11–12), 1435–1450 (2003)Google Scholar
  11. 11.
    Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming and Mixed FEM. Math. Comp. 71(239), 945–969 (2002)Google Scholar
  12. 12.
    Carstensen, C., Funken, S.A.: Constants in Clement-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8(3), 153–175 (2000)zbMATHGoogle Scholar
  13. 13.
    Carstensen, C., Funken, S.A.: Averaging technique for FE a posteriori error control in elasticity. Part I: conforming FEM. Comp. Meth. Appl. Engrg. 190, 2483–2498 (2001); II. λ-independend estimates. Comput. Methods Appl. Mech. Engrg. 190(35–36), 4663–4675 (2001); III. Locking-free nonconforming FEM. Comput. Methods Appl. Mech. Engrg. 191(8-10), 861–877 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Carstensen, C., Funken, S.A.: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comp. 70(236), 1353–1381 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36(5), 1571–1587 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84(4), 527–548 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland Publishing Co. Amsterdam, xix+530, 1978Google Scholar
  18. 18.
    Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(R-2), 77–84 (1975)Google Scholar
  19. 19.
    Elliott, C.M.: On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1(1), 115–125 (1981)zbMATHGoogle Scholar
  20. 20.
    Eriksson, K., Estep, D.J., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica, 1995, Cambridge Univ. Press, Cambridge, 1995, pp. 105–158Google Scholar
  21. 21.
    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, viii+268, 1992Google Scholar
  22. 22.
    Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)zbMATHGoogle Scholar
  23. 23.
    Glowinski, R., Lions, J-L., Tremolieres, R.: Numerical analysis of variational inequalities. (Studies in Mathematics and its Applications) North-Holland Publishing Co. Amsterdam, 8, 1981Google Scholar
  24. 24.
    Kornhuber, R., Adaptive monotone multigrid methods for nonlinear variational problems. (Advances in Numerical Mathematics) B.G.Teubner, Stuttgart, 158, 1997Google Scholar
  25. 25.
    Li, R., Liu, W., Tang, T.: Moving Mesh Finite Element Approximations for Variational Inequality I: Static Obstacle Problems. Preprint 277 of Department of Mathematics, Hong Kong Baptist University, 2000Google Scholar
  26. 26.
    Natterer, F.: Optimale L2-Konvergenz finiter Elemente bei Variationsungleichungen. Bonner Math. Schr. 89, 1–12 (1976)Google Scholar
  27. 27.
    Nochetto, R.H., Wahlbin, L.B.: Positivity preserving finite element interpolation. Math. Comput. 71(240), 1405–1419 (2002)CrossRefzbMATHGoogle Scholar
  28. 28.
    Rodrigues, J.F.: Obstacle problems in mathematical physics. North Holland Publishing Co. Amsterdam, xvi+352, 1987Google Scholar
  29. 29.
    Veeser, A.: On a posteriori error estimation for constant obstacle problems. (Numerical methods for viscosity solutions and applications (Heraklion, 1999)), Ser. Adv. Math. Appl. Sci. World Sci. Publishing, 59, 221–234 (2001)Google Scholar
  30. 30.
    Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39(1), 146–167 (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Verfürth, R.: A review of a posteriori error estimation and adaptive mesh- refinement techniques. Wiley-Teubner, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA
  2. 2.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations