Skip to main content
Log in

Solution of lambda-omega systems: Theta-schemes and multigrid methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

The numerical solution of a time-dependent reaction diffusion lambda-omega system discretized by theta-schemes and finite differences is considered. Stability and accuracy of finite difference theta-schemes for this system are established. To solve the time-implicit evolution equations a nonlinear multigrid method is applied. The convergence properties of this solver are investigated considering a linearized lambda-omega model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    MATH  Google Scholar 

  2. Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT Numer. Math. 43, 231–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borzì, A.: Multigrid methods for parabolic distributed optimal control problems. J. Comp. Appl. Math 157, 365–382 (2003)

    Article  MathSciNet  Google Scholar 

  4. Borzì, A., Kunisch, K., Kwak Do, Y.: Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system. SIAM J. Control Optim. 41, 1477–1497 (2003)

    Article  Google Scholar 

  5. Bramble, J.H.: Multigrid Methods. Pitman Research Notes in Mathematics Series, Essex, 1993

  6. Bramble, J.H., Kwak Do, Y., Pasciak, J.E.: Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31, 1746–1763 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Sammon, P.H., Thomèe, V.: Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52, 339–367 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56, 1–34 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    MATH  Google Scholar 

  10. Brandt, A., Greenwald, J.: Parabolic multigrid revisited. In: W. Hackbusch, U. Trottenberg (eds.), Multigrid Methods III, Int. Series of Numerical Mathematics, Vol. 98, Birkhäuser, Basel, 1991

  11. Browning, G.L., Kreiss, H.-O.: Comparison of numerical methods for the calculation of two-dimensional turbulence. Math. Comput. 52, 369–388 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Chou, S.H., Kwak Do, Y.: V-Cycle multigrid for a vertex-centered covolume method for elliptic problems. Numer. Math. 90(3), 441–458 (2002)

    Article  MATH  Google Scholar 

  13. Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  14. Douglas, J., Dupont, T., Jr.: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7(4), 575–626 (1970)

    MATH  Google Scholar 

  15. Duffy, A., Britton, K., Murray, J.: Spiral wave solutions of practical reaction-diffusion systems. SIAM J. Appl. Math 39(1), 8–13 (1980)

    MATH  Google Scholar 

  16. Eguiluz, V.M., Hernandez-Garcia, E., Piro, O.: Complex Ginzburg-Landau equation in the presence of walls and corners. Phys. Rev. E 64, 1–10 (2001)

    Google Scholar 

  17. Hackbusch, W.: Multi-grid Methods and Applications. Springer-Verlag, New York, 1985

  18. Hackbusch, W.: Elliptic Differential Equations. Springer-Verlag, New York, 1992

  19. Hackbusch, W.: Parabolic multigrid methods. In: R. Glowinski, J.-L. Lions (eds.), Computing Methods in Applied Sciences and Engineering VI, North-Holland, Amsterdam, 1984

  20. Hoffmann, K.-H., Tang, Q.: Ginzburg-Landau Phase Transition Theory and Superconductivity. Vol. 134, Birkhäuser, 2001

  21. Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995)

    MATH  Google Scholar 

  22. Kopell, N., Howard, L.N.: Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. LII(4), 291–328 (1973)

    Google Scholar 

  23. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, 1984

  24. Kuramoto, Y., Koga, S.: Turbulized rotating chemical waves. Prog. Theor. Phys. 66(3), 1081–1085 (1981)

    Google Scholar 

  25. Larsson, S.: Lecture Notes on Semilinear Parabolic Problems. Department of Mathematics, Chalmers University of Technology, 1996

  26. Larsson, S.: A shadowing result with applications to finite element approximation of reaction-diffusion equations. To appear in IMA J. Numer. Anal.

  27. Larsson, S., Sanz-Serna, J.-M.: A shadowing result with applications to finite element approximation of reaction-diffusion equations. Math. Comput. 68, 55–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Larsson, S., Thomée, V., Zhou, S.Z.: On multigrid methods for parabolic problems. J. Comput. Math 13, 193–205 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Levermore, C.D., Oliver, M.: The complex Ginzburg-Landau equation as a model problem. Lectures in Applied Mathematics, Vol. 31, AMS, Providence, 1996, pp. 141–190

  30. Lord, G.L., Stuart, A.M.: Discrete Gevrey regularity, attractors and upper semicontinuity for a finite difference approximation to the Ginzburg-Landau equation. Numer. Func. Anal. Opt. 16, 1003–1047 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Lord, G.L.: Attractors and inertial manifolds for the finite-difference approximations of the complex Ginzburg-Landau equation. SIAM J. Numer. Anal. 34(4), 1483–1512 (1997)

    Article  MATH  Google Scholar 

  32. Lubich, C., Ostermann, A.: Hopf bifurcation of reaction-diffusion and Navier-Stokes equations under discretization. Numer. Math. 81, 53–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    MATH  Google Scholar 

  34. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, 1994

  35. Murray, J.D.: Mathematical Biology. Springer-Verlag, 1993

  36. Ostermann, A., Palencia, C.: Shadowing for nonautonomous parabolic problems with applications to long-time error bounds. SIAM J. Numer. Anal. 37(5), 1399–1419 (2000)

    Article  MATH  Google Scholar 

  37. Paullet, J., Ermentrout, B., Troy, W.: The Existence of spiral waves in an oscillatory reaction-diffusion system. SIAM J. Appl. Math. 54(5), 1386–1401 (1994)

    MATH  Google Scholar 

  38. Sherratt, J.A.: On the evolution of periodic plane waves in reaction-diffusion systems of λ - ω type. SIAM J. Appl. Math. 54(5), 1374–1385 (1994)

    MATH  Google Scholar 

  39. Süli, E.: Finite Elements Methods for Partial Differential Equations. Lecture Notes, Oxford University Computing Laboratory, Oxford, 2001

  40. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, 1997

  41. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London, 2001

Download references

Acknowledgments.

I would like to thank the anonymous Referees for many comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Borzì.

Additional information

Mathematics Subject Classification (1991): 35K57, 65M06, 65M12, 65M55, 65P20, 65P40

Revised version received February 3, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzì, A. Solution of lambda-omega systems: Theta-schemes and multigrid methods. Numer. Math. 98, 581–606 (2004). https://doi.org/10.1007/s00211-004-0545-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0545-6

Keywords

Navigation