Skip to main content
Log in

An adaptive finite element method for singular parabolic equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We study the adaptive finite element method to solve singular parabolic equations of porous media type and of nonstationary infiltration. We first prove a posteriori error estimates that especially take into account the discretization and algebraic errors. Furthermore we propose a robust adaptive method and apply this method to saturated/unsaturated porous media flow in an aquifer coupled with a root extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G.: The porous medium equation. In: A. Fasano, M. Primicerio, (eds) Nonlinear Diffusion Problems, pp. 1–46, Berlin, 1985. Lecture Notes in Mathematics 1224, Springer

  3. Bänsch, E.: Numerical experiments with adaptivity for the porous medium equation. Acta Math. Univ. Comenianae 2, 157–172 (1995)

    MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Friedman, A.: Regularity of the free boundary for a gas in an n–dimensional porous medium. Indiana Univ. Math. J. 29, 361–391 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978

  6. Clausnitzer, V., Hopmans, J.W.: Simultaneous modeling of transient three–dimensional root growth and soil water flow. Plant and Soil 164, 299–314 (1994)

    CAS  Google Scholar 

  7. Clément, P.: Approximation by finite element functions using local regularizations. RAIRO Modél. Math. Anal. Numér. 2, 77–84 (1975)

    Google Scholar 

  8. Feddes, R.A., Bresler, B., Neuman, S.P.: Field test of a modified numerical method for water uptake by root systems. Wat. Res. Res. 10, 1199–1206 (1974)

    Google Scholar 

  9. Fuhrmann, J.: Zur Verwendung von Mehrgitterverfahren bei der numerischen Behandlung elliptischer partieller Differentialgleichungen zweiter Ordnung mit variablen Koeffizienten. PhD thesis, Technische Universität Chemnitz, Fakultät für Mathematik und Naturwissenschaften, September, 1993

  10. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin, 1983

  11. Grisvard, P.: Elliptic problems on non-smooth domains. Pitman, Boston, 1985

  12. Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G.: A comparison of numerical simulation models for one–dimensional infiltration. Soil. Sci. Soc. Am. J. 41, 285–294 (1977)

    Google Scholar 

  13. Jäger, W., Kačur, J.: Solution of porous medium type systems by linear approximation schemes. Numer. Math. 60, 407–427 (1991)

    MathSciNet  Google Scholar 

  14. Jäger, W., Kačur, J.: Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO, Modelisation Math. Anal. Numer. 29, 605–627 (1995)

    Google Scholar 

  15. Kačur, J.: Solution of strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19, 119–145 (1999)

    MathSciNet  Google Scholar 

  16. Kačur, J., Mikula, K.: Solution of nonlinear diffusion appearing in image smoothing and edge detection. Appl. Numer. Math. 17, 47–59 (1995)

    Article  Google Scholar 

  17. Knabner, P.: Finite element simulation of saturated–unsaturated flow through porous media. In: P. Deuflhard, B. Engquist, (eds) Large Scale Scientific Computing, pp. 83–93, Stuttgart, 1987. Birkhäuser

  18. Kufner, A., John, O., Fučic, S.: Function Spaces. Academia CSAV, Prague, 1967

  19. Ladyzenskaya, O., Solonnikov, V., Ural’ceva, N.: Linear and quasilinear equations of parabolic type. Nauka, Moscow, 1967

  20. Molz, F.J.: Models of water transport in the soil–plant system: a review. Wat. Res. Res. 17, 1245–1260 (1981)

    Google Scholar 

  21. Mualem, Y.: A new model for predicting the hydraulic comductivity of unsaturated porous media. Water Res. Res. 12, 513–522 (1976)

    Google Scholar 

  22. Nochetto, R.H.: Error estimates for multidimensional singular parabolic problems. Japan. J. Appl. Math. 4, 111–138 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Nochetto, R.H., Schmidt, A., Verdi, C.: Adapting meshes and time-steps for phase change problems. Quaderno, Milano 12, (1997)

  24. Nochetto, R.H., Schmidt, A., Verdi, C.: Adaptive solution of parabolic free boundary problems with error control. In: I. Athanasopoulos, (eds) Free boundary problems: theory and applications. Proceedings of the conference, Crete, Greece, June 8–14, 1997, pp. 344–355. Res. Notes Math. 409, 1999

  25. Nochetto, R.H., Schmidt, A., Verdi, C.: A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. 69, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pagés, L., Kervella, J.: Growth and development of root systems: geometrical and structural aspects. Acta Biotheoretica 38, 289–302 (1990)

    Google Scholar 

  27. Raviart, P.A.: The use of numerical integration in finite element methods for solving parabolic equations. In: J.J.H. Miller et~al., (eds) Topics in Numerical Analysis, pp. 233–264. Academic Press, 1973

  28. Schneid, E.: Hybrid–Gemischte Finite–Elemente–Diskretisierung der Richards–Gleichung. PhD thesis, Universität Erlangen–Nürnberg, Juli, 2000

  29. Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van~de Geijn, S.C.: Root Methods. Springer, Berlin, 2000

  30. van Genuchten, M.T.: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Google Scholar 

  31. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley, Chichester, Stuttgart, 1996

  32. Wilderotter, O.: An adaptive numerical method for the Richards equation with root growth. Plant and Soil 251, 255–267 (2003)

    Article  Google Scholar 

  33. Wilderotter, O.: Adaptive Finite–Elemente Methoden für singuläre parabolische Probleme. PhD thesis, Universität Bonn, April, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Wilderotter.

Additional information

Mathematics Subject Classification (2000): 65N15, 65N30, 35K65, 76S05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilderotter, O. An adaptive finite element method for singular parabolic equations. Numer. Math. 96, 377–399 (2003). https://doi.org/10.1007/s00211-003-0463-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0463-z

Keywords

Navigation