Advertisement

Numerische Mathematik

, Volume 95, Issue 1, pp 29–51 | Cite as

Finite element analysis of pressure formulation of the elastoacoustic problem

  • A. Bermúdez
  • P. Gamallo
  • L. Hervella-Nieto
  • R. Rodríguez
Article

Abstract

In this paper we analyze the non symmetric pressure/displacement formulation of the elastoacoustic vibration problem and show its equivalence with the (symmetric) stiffness coupling formulation. We introduce discretizations for these problems based on Lagrangian finite elements. We show that both formulations are also equivalent at discrete level and prove optimal error estimates for eigenfunctions and eigenvalues. Both formulations are rewritten such as to be solved with a standard Matlab eigensolver. We report numerical results comparing the efficiency of the methods over some test examples.

Keywords

Error Estimate Finite Element Analysis Pressure Formulation Discrete Level Vibration Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška, I., Osborn, J.: Eigenvalue problems. Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet y J.L. Lions, eds., North Holland, Amsterdam, 1991Google Scholar
  2. 2.
    Bermúdez, A., Durán, R., Muschietti, M.A., Rodríguez, R., Solomin, J.: Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32, 1280–1295 (1995)Google Scholar
  3. 3.
    Bermúdez, A., Rodríguez, R.: Finite element computation of the vibration modes of a fluid-solid system. Comput. Methods Appl. Mech. Eng. 119, 355–370 (1994)CrossRefGoogle Scholar
  4. 4.
    Bermúdez, A., Rodríguez, R.: Analysis of a finite element method for pressure/ potential formulation of elastoacoustic spectral problems. Math. Comp. 71, 537–552 (2002)CrossRefGoogle Scholar
  5. 5.
    Conca, C., Planchard, J., Vanninathan, M.: Fluids and Periodic Structures. Masson, Paris, 1995Google Scholar
  6. 6.
    Dauge, M.: Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions. Lecture Notes in Mathematics, 1341, Springer, Berlin, 1988Google Scholar
  7. 7.
    Dauge, M.: Problèmes de Neumann et de Dirichlet sur un polyèdre dans ℝ3: régularité dans des spaces de Sobolev L p. C. R. Acad. Sci. Paris, Série I 307, 27–32 (1988)Google Scholar
  8. 8.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985Google Scholar
  9. 9.
    Hamdi, M., Ousset, Y., Verchery, G.: A displacement method for the analysis of vibrations of coupled fluid-structure systems. Int. J. Numer. Methods Eng. 13, 139–150 (1978)MATHGoogle Scholar
  10. 10.
    Kolata, W.G.: Approximation in variationally posed eigenvalues problems. Numer. Math. 29, 159–171 (1978)MathSciNetMATHGoogle Scholar
  11. 11.
    Morand, H.J-P., Ohayon, R.: Interactions Fluides-Structures. Recherches en Mathématiques Appliquées 23, Masson, Paris, 1992Google Scholar
  12. 12.
    Ohayon, R., Soize, C.: Structural Acoustics and Vibration. New York: Academic Press, 1998Google Scholar
  13. 13.
    Olson, L.G., Bathe, K.J.: A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems. Nucl. Eng. Design 76, 137–151 (1983)CrossRefGoogle Scholar
  14. 14.
    von Petersdorff, T.: Boundary value problems of elasticity in polyhedra: singularities and approximation with boundary element methods. PhD Thesis, Technical University Darmstadt, Darmstadt, Germany, 1989Google Scholar
  15. 15.
    von Petersdorff, T., Stephan, E.P.: Regularity of mixed boundary value problems in ℝ3 and boundary integral methods on graded meshes. Math. Methods Appl. Sci. 12, 229–249 (1990)MATHGoogle Scholar
  16. 16.
    Petyt, M.: Introduction to Finite Element Vibration Analysis. Cambridge-New York: Cambridge University Press, 1990Google Scholar
  17. 17.
    Sandberg, G.: A new strategy for solving fluid-structure problems. Int. J. Numer. Methods Eng. 38, 357–370 (1995)MathSciNetMATHGoogle Scholar
  18. 18.
    Wandinger, J.: Analysis of small vibrations of coupled fluid-structure systems. Z. angew. Math. Mech. 74, 37–42 (1994)MathSciNetMATHGoogle Scholar
  19. 19.
    Zienkiewicz, O.C., Newton, R.E.: Coupled vibration of a structure submerged in a compressible fluid. Proc. Int. Symp. on Finite Element Techniques, Stuttgart, 1–15 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Bermúdez
    • 1
  • P. Gamallo
    • 2
  • L. Hervella-Nieto
    • 3
  • R. Rodríguez
    • 4
  1. 1.Departamento de Matemática AplicadaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Departamento de Matemática AplicadaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Departamento de MatemáticasUniversidade da CoruñaA CoruñaSpain
  4. 4.GI2MA, Departamento de Ingeniería MatemáticaUniversidad de ConcepciónConcepciónChile

Personalised recommendations