Advertisement

Numerische Mathematik

, Volume 96, Issue 4, pp 723–731 | Cite as

A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices

  • S. ChandrasekaranEmail author
  • M. Gu
Article

Summary.

We present a fast and numerically stable algorithm for computing the eigendecomposition of a symmetric block diagonal plus semiseparable matrix. We report numerical experiments that indicate that our algorithm is significantly faster than the standard method which treats the given matrix as a general symmetric dense matrix.

Keywords

Standard Method Numerical Experiment Dense Matrix Stable Algorithm Symmetric Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen: LAPACK Users’ Guide, SIAM, Philadelphia, PA, second ed., 1994Google Scholar
  2. 2.
    J. R. Bunch, C. P. Nielsen, D. C. Sorensen: Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31–48 (1978)MathSciNetGoogle Scholar
  3. 3.
    J. Carrier, L. Greengard, V. Rokhlin: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669–686 (1988)MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. Chandrasekaran, M. Gu: Fast and Stable Eigendecomposition of Symmetric Banded plus Semi-separable Matrices. Submitted to Lin. Alg. ApplicsGoogle Scholar
  5. 5.
    J. J. M. Cuppen: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1981)Google Scholar
  6. 6.
    J. J. Dongarra, D. C. Sorensen: A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, S139–S154 (1987)Google Scholar
  7. 7.
    G. Golub, C. Van Loan: Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 3nd ed., 1996Google Scholar
  8. 8.
    G. H. Golub: Some modified matrix eigenvalue problems. SIAM Review 15, 318–334 (1973)Google Scholar
  9. 9.
    L. Greengard, V. Rokhlin: A fast algorithm for particle simulations. J. Comp. Phys. 73, 325–348 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Gu, S. Eisenstat: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 79–92 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Gu, S. C. Eisenstat: A fast divide-and-conquer method for the symmetric tridiagonal eigenproblem. Presented at the fourth SIAM conference on applied linear algebra, Minneapolis, Minnesota, September 1991Google Scholar
  12. 12.
    M. Gu, S. C. Eisenstat: A stable and fast algorithm for updating the singular value decomposition. Research Report YALEU/DCS/RR-966, Department of Computer Science, Yale University, June 1993Google Scholar
  13. 13.
    M. Gu, S. C. Eisenstat: A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15, 1266–1276 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    E. R. Jessup: Parallel solution of the symmetric tridiagonal eigenproblem. PhD thesis, Department of Computer Science, Yale University, 1989Google Scholar
  15. 15.
    E. R. Jessup, I. C. F. Ipsen: Improving the accuracy of inverse iteration. SIAM J. Sci. Stat. Comput. 13, 550–572 (1992)MathSciNetzbMATHGoogle Scholar
  16. 16.
    W. Kahan: Rank-1 perturbed diagonal’s eigensystem. Unpublished manuscript, July 1989Google Scholar
  17. 17.
    R.-C. Li: Solving secular equations stably and efficiently. Unpublished manuscript, October 1992Google Scholar
  18. 18.
    R.-C. Li: Solving secular equations stably and efficiently. Computer Science Dept. Technical Report CS-94-260, University of Tennessee, Knoxville, November 1994. (LAPACK Working Note #89)Google Scholar
  19. 19.
    B. N. Parlett: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ, 1980Google Scholar
  20. 20.
    D. C. Sorensen, P. T. P. Tang: On the orthogonality of eigenvectors computed by divide-and-conquer techniques. SIAM J. Numer. Anal. 28, 1752–1775 (1991)MathSciNetzbMATHGoogle Scholar
  21. 21.
    G. W. Stewart: Introduction to Matrix Computations. Academic Press, New York, 1973Google Scholar
  22. 22.
    J. H. Wilkinson: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations