Skip to main content
Log in

Anti-cancer properties of Sansalvamide A, its derivatives, and analogs: an updated review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

As peptide-based therapies gain recognition for their potential anti-cancer activity, cyclic peptides like Sansalvamide A, a marine-derived cyclic depsipeptide, have emerged as a potential anti-cancer agent due to their potent activity against various cancer types in preclinical studies. This review offers a comprehensive overview of Sansalvamide A, including its sources, structure–activity relationship, and semi-synthetic derivatives. The review also aims to outline the mechanisms through which Sansalvamide A and its analogs exert their anti-proliferative effects and to discuss the need for enhancements in pharmacokinetic profiles for better clinical utility. An extensive literature search was conducted, focusing on studies that detailed the anti-cancer activity of Sansalvamide A, its pharmacokinetics, and mechanistic pathways. Data from both in vitro and in vivo studies were collated and analyzed. Sansalvamide A and its analogs demonstrated significant anti-cancer activity across various cancer models, mediated through Hsp 90 inhibition, Topoisomerase inhibition, and G0/G1 cell cycle arrest. However, their pharmacokinetic properties were identified as a significant limitation, requiring improvement for effective clinical translation. Despite its notable anti-cancer effects, the utility of Sansalvamide A is currently limited by its pharmacokinetic characteristics. Therefore, while Sansalvamide A exhibits promise as an anti-cancer agent, there is a compelling need for further clinical and toxicological studies and optimization of its pharmacokinetic profile to fully exploit its therapeutic potential alongside modern cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

AKT:

Protein kinase B (also known as PKB)

ATP:

Adenosine triphosphate

CDK:

Cyclin-dependent kinase

DNA:

Deoxyribonucleic acid

EC50:

Half maximal effective concentration

GI50:

Half maximal growth inhibitory concentration

G0:

Gap 0 phase of the cell cycle

G1:

Gap 1 phase of the cell cycle

G2:

Gap 2 phase of the cell cycle

Hsp90:

Heat shock protein 90

IC50:

Half maximal inhibitory concentration

MAPKs:

Mitogen-activated protein kinases

MMP-9:

Matrix metalloproteinase-9

M:

Mitosis phase of the cell cycle

NCI:

National Cancer Institute

NRPS30:

Non-ribosomal peptide synthetase 30

PET:

Positron emission tomography

S:

Synthesis phase of the cell cycle

Topo I:

Topoisomerase I

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  • Alexander LD, Sellers RP, Davis MR, Ardi VC, Johnson VA, Vasko RC, Mcalpine SR (2009a) Evaluation of Di-Sansalvamide A derivatives: synthesis, structure-activity relationship, and mechanism of action. J Med Chem 52:7927–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander LD, Sellers RP, Davis MR, Ardi VC, Johnson VA, Vasko RC, McAlpine SR (2009b) Evaluation of Di-Sansalvamide A derivatives: synthesis, structure−activity relationship, and mechanism of action. J Med Chem 52:7927–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander LD, Partridge JR, Agard DA, Mcalpine SR (2011) A small molecule that preferentially binds the closed conformation of Hsp90. Bioorg Med Chem Lett 21:7068–7071

    Article  CAS  PubMed  Google Scholar 

  • Angélica de Fátima SB, Vercillo OE, Wessjohann LA, Andrade CKZ (2014) Consecutive isocyanide-based multicomponent reactions: synthesis of cyclic pentadepsipeptoids. Beilstein J Org Chem 10:1017–1022

    Article  Google Scholar 

  • Barrott JJ, Haystead TA (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J 280:1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Belofsky GN, Jensen PR, Fenical W (1999a) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916

    Article  CAS  Google Scholar 

  • Belofsky GN, Jensen PR, Fenical W (1999b) ChemInform abstract: sansalvamide: a new cytotoxic cyclic depsipeptide produced by a Marine Fungus of the Genus Fusarium. ChemInform 30: no-no. https://doi.org/10.1002/chin.199929185

  • Berrino E, Supuran CT (2018) Advances in microwave-assisted synthesis and the impact of novel drug discovery. Expert Opin Drug Discov 13:861–873

    Article  CAS  PubMed  Google Scholar 

  • Birbo B, Madu EE, Madu CO, Jain A, Lu Y (2021) Role of HSP90 in cancer. Int J Mol Sci 22(19):10317. https://doi.org/10.3390/ijms221910317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd MR, Paull KD (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Carroll CL, Johnston JV, Kekec A, Brown JD, Parry E, Cajica J, Medina I, Cook KM, Corral R, Pan P-S (2005) Synthesis and cytotoxicity of novel Sansalvamide A derivatives. Org Lett 7:3481–3484. https://doi.org/10.1021/ol051161g

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM, van Rossum DB, Patterson RL, Snyder SH (2008) HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc Natl Acad Sci 105:1134–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 62:1005–1022

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Sullivan WP, Toft DO, Smith DF (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Ma W, Li G, Wang J, Yang W, Yap L-P, Hughes LD, Park R, Conti PS (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm 10:417–427

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cueto M, Jensen PR, Fenical W (2000) N-Methylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus Fusarium. Phytochemistry 55:223–226

    Article  CAS  PubMed  Google Scholar 

  • Cuevas F, Saavedra CJ, Romero-Estudillo I, Boto A, Ordóñez M, Vergara I (2021) Structural diversity using hyp “customizable units”: proof-of-concept synthesis of sansalvamide-related antitumoral peptides. Eur J Org Chem 2021:933–943

    Article  CAS  Google Scholar 

  • Davis MR, Styers TJ, Rodriguez RA, Pan P-S, Vasko RC, McAlpine SR (2008) Synthesis and cytotoxicity of a new class of potent decapeptide macrocycles. Org Lett 10:177–180

    Article  CAS  PubMed  Google Scholar 

  • Davis MR, Singh EK, Wahyudi H, Alexander LD, Kunicki JB, Nazarova LA, Fairweather KA, Giltrap AM, Jolliffe KA, McAlpine SR (2012) Synthesis of Sansalvamide A peptidomimetics: triazole, oxazole, thiazole, and pseudoproline containing compounds. Tetrahedron 68:1029–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias N, Hervé V, Lansiaux A, Bailly C (2005) Topoisomerase inhibitors of marine origin and their potential use as anticancer agents. Top Curr Chem 253:19

    Google Scholar 

  • Eghtedari M, Porzani SJ, Nowruzi B (2021) Anticancer potential of natural peptides from terrestrial and marine environments: a review. Phytochem Lett 42:87–103

    Article  CAS  Google Scholar 

  • Garg G, Khandelwal A, Blagg BS (2016) Anticancer inhibitors of Hsp90 function: beyond the usual suspects. Adv Cancer Res 129:51–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Liu S, Silverman RB (2002) Solid-phase, Pd-catalyzed silicon-aryl carbon bond formation. Synthesis of Sansalvamide A peptide. Org Lett 4:4171–4174

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Heiferman MJ, Salabat MR, Ujiki MB, Strouch MJ, Cheon EC, Silverman RB, Bentren DJ (2010a) Sansalvamide induces pancreatic cancer growth arrest through changes in the cell cycle. Anticancer Res 30:73–78

    CAS  PubMed  Google Scholar 

  • Heiferman MJ, Salabat MR, Ujiki MB, Strouch MJ, Cheon EC, Silverman RB, Bentrem DJ (2010b) Sansalvamide induces pancreatic cancer growth arrest through changes in the cell cycle. Anticancer Res 30:73–78

    CAS  PubMed  Google Scholar 

  • Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product Sansalvamide A. Mol Pharmacol 55:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Johnson V, Singh E, Nazarova L, Alexander L, McAlpine S (2010) Macrocyclic Inhibitors of Hsp90. Curr Top Med Chem 10:1380–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karuppiah V, Zhang F, Li Z (2015) Natural products with anticancer activity from marine fungi. In: Kim SK (ed) Handbook of anticancer drugs from marine origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_13

  • Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR, Iwasaki A, Suenaga K, Alajlani M, Göransson U, El-Seedi HR (2019) Marine natural products: a source of novel anticancer drugs. Mar Drugs 17(9):491. https://doi.org/10.3390/md17090491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koay YC, McConnell JR, Wang Y, Kim SJ, Buckton LK, Mansour F, McAlpine SR (2014) Chemically accessible hsp90 inhibitor that does not induce a heat shock response. ACS Med Chem Lett 5:771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunicki JB, Petersen MN, Alexander LD, Ardi VC, McConnell JR, McAlpine SR (2011) Synthesis and evaluation of biotinylated Sansalvamide A analogs and their modulation of Hsp90. Bioorg Med Chem Lett 21:4716–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang SA, Moser C, Gaumann A, Klein D, Glockzin G, Popp FC, Dahlke MH, Piso P, Schlitt HJ, Geissler EK (2007) Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1α autocrine loop, and reduces orthotopic tumor growth. Clin Cancer Res 13:6459–6468

    Article  CAS  PubMed  Google Scholar 

  • Lee H-S, Lee C (2012) Structural analysis of a new cytotoxic demethylated analogue of neo-n-methylSansalvamide with a different peptide sequence produced by Fusarium solani isolated from potato. J Agric Food Chem 60:4342–4347

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Silverman RB (2000) Rapid, high-yield, solid-phase synthesis of the antitumor antibiotic Sansalvamide A using a side-chain-tethered phenylalanine building block. Org Lett 2:3743–3746

    Article  CAS  PubMed  Google Scholar 

  • Lee H-S, Phat C, Choi S-U, Lee C (2013) Synergistic effect of a novel cyclic pentadepsipeptide, neoN-methylsansalvamide, and paclitaxel on human multidrug resistance cancer cell lines. Anticancer Drugs 24:455–460

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Phat C, Hong SC (2017) Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 95:94–105

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Gu W, Lo D, Ding X-Z, Ujiki M, Adrian TE, Soff GA, Silverman RB (2005) N-methylSansalvamide a peptide analogues. Potent new antitumor agents. J Med Chem 48:3630–3638

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang G, Wang H, Liu S, Chen J, Zhao L, Li J, Shan B (2016) Novel cyclic pentapeptide H-15 induces differentiation and inhibits proliferation in murine melanoma B16 cells. Oncol Lett 11:1251–1255

    Article  CAS  PubMed  Google Scholar 

  • Lunagariya J, Liao X, Long W et al (2017) Cytotoxicity study of cyclopentapeptide analogues of marine natural product galaxamide towards human breast cancer cells. Oxid Med Cell Longev 2017:8392035. https://doi.org/10.1155/2017/8392035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClendon AK, Rodriguez AC, Osheroff N (2005) Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J Biol Chem 280:39337–39345

    Article  CAS  PubMed  Google Scholar 

  • McConnell JR, Alexander LA, McAlpine SR (2014) A heat shock protein 90 inhibitor that modulates the immunophilins and regulates hormone receptors without inducing the heat shock response. Bioorg Med Chem Lett 24:661–666

    Article  CAS  PubMed  Google Scholar 

  • Mielczarek-Lewandowska A, Hartman ML, Czyz M (2020) Inhibitors of HSP90 in melanoma. Apoptosis 25:12–28

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Serna JA, Sánchez E, Velázquez R, Bernal J, García-Ríos E, Gaviño R, Negrón-Silva G, Cárdenas J (2010) Highly efficient macrolactonization of ω-hydroxy acids using benzotriazole esters: synthesis of Sansalvamide A. Org Biomol Chem 8:4940–4948

    Article  CAS  PubMed  Google Scholar 

  • Nhàn NTT, Yamada T, Yamada KH (2023) Peptide-based agents for cancer treatment: current applications and future directions. Int J Mol Sci 24:12931. https://doi.org/10.3390/ijms241612931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okawa Y, Hideshima T, Steed P, Vallet S, Hall S, Huang K, Rice J, Barabasz A, Foley B, Ikeda H (2009) SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood 113:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otrubova K, Lushington G, Vander Velde D, Mcguire KL, Mcalpine SR (2008) Comprehensive study of Sansalvamide A derivatives and their structure–activity relationships against drug-resistant colon cancer cell lines. J Med Chem 51:530–544

    Article  CAS  PubMed  Google Scholar 

  • Pace CN, Fu H, Lee Fryar K, Landua J, Trevino SR, Schell D, Thurlkill RL, Imura S, Scholtz JM, Gajiwala K (2014) Contribution of hydrogen bonds to protein stability. Protein Sci 23:652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan P-S, Vasko RC, Lapera SA, Johnson VA, Sellers RP, Lin C-C, Pan C-M, Davis MR, Ardi VC, McAlpine SR (2009) A comprehensive study of Sansalvamide A derivatives: the structure–activity relationships of 78 derivatives in two pancreatic cancer cell lines. Bioorg Med Chem 17:5806–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey DM, McConnell JR, Alexander LD, Tanaka KW, Vera CM, McAlpine SR (2012) An Hsp90 modulator that exhibits a unique mechanistic profile. Bioorg Med Chem Lett 22:3287–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RA, Pan P-S, Pan C-M, Ravula S, Lapera S, Singh EK, Styers TJ, Brown JD, Cajica J, Parry E (2007a) Synthesis of second-generation Sansalvamide A derivatives: novel templates as potential antitumor agents. J Org Chem 72:1980–2002

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RA, Pan PS, Pan CM, Ravula S, Lapera S, Singh EK, Styers TJ, Brown JD, Cajica J, Parry E, Otrubova K, McAlpine SR (2007b) Synthesis of second-generation Sansalvamide A derivatives: novel templates as potential antitumor agents. J Org Chem 72:1980–2002

    Article  CAS  PubMed  Google Scholar 

  • Romans-Fuertes P, Sondergaard TE, Sandmann MI, Wollenberg RD, Nielsen KF, Hansen FT, Giese H, Brodersen DE, Sørensen JL (2016) Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug Sansalvamide in Fusarium solani. Curr Genet 62:799–807

    Article  CAS  PubMed  Google Scholar 

  • Sellers RP, Alexander LD, Johnson VA, Lin C-C, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR (2010a) Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives. Bioorg Med Chem 18:6822–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellers RP, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR, Ravula S, Spicer JE, Oelrich JL, Thornquist A, Pan CM, McAlpine SR (2010b) Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives. Bioorg Med Chem 18:6822–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H-H, Lee H-S, Lee C (2011) A new cytotoxic cyclic pentadepsipeptide, neo-N-methylSansalvamide produced by Fusarium solani KCCM90040, isolated from potato. Food Chem 126:472–478

    Article  CAS  Google Scholar 

  • Song J-H, Park J, Park SL, Hwang B, Kim W-J, Lee C, Moon S-K (2021) A novel cyclic pentadepsipeptide, N-Methylsansalvamide, suppresses angiogenic responses and exhibits antitumor efficacy against bladder cancer. Cancers 13:191. https://doi.org/10.3390/cancers13020191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styers TJ, Kekec A, Rodriguez R, Brown JD, Cajica J, Pan P-S, Parry E, Carroll CL, Medina I, Corral R (2006) Synthesis of Sansalvamide A derivatives and their cytotoxicity in the MSS colon cancer cell line HT-29. Bioorg Med Chem 14:5625–5631

    Article  CAS  PubMed  Google Scholar 

  • Travers J, Sharp S, Workman P (2012) HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discovery Today 17:242–252

    Article  CAS  PubMed  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nature reviews. Cancer 10(8):537–549. https://doi.org/10.1038/nrc2887

    Article  CAS  PubMed  Google Scholar 

  • Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S (2021) Natural peptides inducing cancer cell death: mechanisms and properties of specific candidates for cancer therapeutics. Molecules 26:7453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ujiki MB, Milam B, Ding X-Z, Roginsky AB, Salabat MR, Talamonti MS, Bell RH, Gu W, Silverman RB, Adrian TE (2006) A novel peptide Sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest. Biochem Biophys Res Commun 340:1224–1228

    Article  CAS  PubMed  Google Scholar 

  • Vasko RC, Rodriguez RA, Cunningham CN, Ardi VC, Agard DA, McAlpine SR (2010) Mechanistic studies of Sansalvamide A-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1:4–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waghray D, Zhang Q (2018) Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J Med Chem 61:5108

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yao X, Fan S, Xiang C, Liu R, Feng J, Huang J, Liu S (2018a) A LY-15, a novel cyclic pentapeptide that inhibits B16 cell proliferation and migration and induces cell apoptosis. Oncol Lett 15:5887–5892

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang J, Wu H, Li Y, Conti PS, Chen K (2018b) PET imaging of Hsp90 expression in pancreatic cancer using a new 64 Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids 50:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang J, Wu H, Li Y, Conti PS, Chen K (2018c) PET imaging of Hsp90 expression in pancreatic cancer using a new (64)Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids 50:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang J, Han Z, Ma L, Li Y (2022a) 18F-labeled dimer-Sansalvamide A cyclodecapeptide: a novel diagnostic probe to discriminate pancreatic cancer from inflammation in a nude mice model. J Cancer 13:1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang J, Han Z, Ma L, Li Y (2022b) <sup>18</sup>F-labeled dimer-Sansalvamide A cyclodecapeptide: a novel diagnostic probe to discriminate pancreatic cancer from inflammation in a nude mice model. J Cancer 13:1848–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu S, Liu Y, Wang F, Ren J, Gu J, Zhou K, Shan B (2014) A novel cyclic pentapeptide, H-10, inhibits B16 cancer cell growth and induces cell apoptosis. Oncol Lett 8:248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-N, Xia Y-X, Zhang H-J (2021) Natural cyclopeptides as anticancer agents in the last 20 years. Int J Mol Sci 22:3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas that is revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and confirming to be accountable for all aspects of the work. All authors have read and agreed to the published version of the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Jobin Jose or Javad Sharifi-Rad.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagaleti, B.K., Baby, K., Peña-Corona, S.I. et al. Anti-cancer properties of Sansalvamide A, its derivatives, and analogs: an updated review. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03129-0

Keywords

Navigation