Skip to main content
Log in

Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations’ safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akbarzadeh I, Yaraki MT, Ahmadi S, Chiani M, Nourouzian D (2020) Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: an in-vitro investigation. Adv Powder Technol 31:4064–4071

    Article  CAS  Google Scholar 

  • Al-Enazi NM, Alsamhary K, Ameen F, Nobre MAL (2023) Novel vesicular formulation based on a herbal extract loaded with niosomes and evaluation of its antimicrobial and anticancer potential. Microbiol Res 14:2133–2147

    Article  CAS  Google Scholar 

  • Aparajay P, Dev A (2022) Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 168:106052

    Article  CAS  PubMed  Google Scholar 

  • Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A (2023) Niosome as an effective nanoscale solution for the treatment of microbial infections. BioMed Res Int 2023:1

    Article  Google Scholar 

  • Braatz D, Peter JH, Dimde M, Quaas E, Ludwig K, Achazi K, Schirner M, Ballauff M, Haag R (2023) Dendritic polyglycerolsulfate-SS-poly (ester amide) micelles for the systemic delivery of docetaxel: pushing the limits of stability through the insertion of π–π interactions. J Mater Chem B 11:3797–3807

    Article  CAS  PubMed  Google Scholar 

  • Cardenas AE, Jas GS, DeLeon KY, Hegefeld WA, Kuczera K, Elber R (2012) Unassisted transport of N-acetyl-L-tryptophanamide through membrane: experiment and simulation of kinetics. J Phys Chem B 116:2739–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draz EI, Abdin AA, Sarhan NI, Gabr TA (2015) Neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity in guinea pigs. Pharmacol Rep 67:317–325

    Article  CAS  PubMed  Google Scholar 

  • Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A (2020) Niosomal drug delivery systems for ocular disease—recent advances and future prospects. Nanomaterials 10:1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M (2021) Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomed 16:1313

    Article  Google Scholar 

  • El-Ridy MS, Badawi AA, Safar MM, Mohsen AM (2012) Niosomes as a novel pharmaceutical formulation encapsulating the hepatoprotective drug silymarin. Int J Pharm Pharm Sci 4:549–559

    CAS  Google Scholar 

  • Fahmy SA, Ramzy A, Sawy AM, Nabil M, Gad MZ, El-Shazly M, Aboul-Soud MA, Azzazy HME-S (2022) Ozonated olive oil: enhanced cutaneous delivery via niosomal nanovesicles for melanoma treatment. Antioxidants 11:1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahmy SA, Sedky NK, Ramzy A, Abdelhady MM, Alabrahim OAA, Shamma SN, Azzazy HME-S (2023) Green extraction of essential oils from Pistacia lentiscus resins: encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells. J Drug Del Sci Technol 87:104820

    Article  CAS  Google Scholar 

  • Fang J (2022) EPR effect-based tumor targeted nanomedicine: a promising approach for controlling cancer. Multidisciplin Digit Publishing Institute 12:95

    Google Scholar 

  • Fraschini F, Demartini G, Esposti D (2002) Pharmacology of silymarin. Clin Drug Invest 22:51–65

    Article  CAS  Google Scholar 

  • Fulton MD, Najahi-Missaoui W (2023) Liposomes in cancer therapy: how did we start and where are we now. Int J Mol Sci 24:6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemiyeh P, Moradishooli F, Daneshamouz S, Heidari R, Niroumand U, Mohammadi-Samani S (2023) Optimization, characterization, and follicular targeting assessment of tretinoin and bicalutamide loaded niosomes. Sci Rep 13:20023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G (2020) Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Advances 10:27835–27855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibzadeh F, Sadraei SM, Mansoori R, Chauhan NPS, Sargazi G (2022) Nanomaterials supported by polymers for tissue engineering applications: a review. Heliyon 8:e12193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajizadeh MR, Parvaz N, Barani M, Khoshdel A, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M (2019) Diosgenin-loaded niosome as an effective phytochemical nanocarrier: physicochemical characterization, loading efficiency, and cytotoxicity assay. DARU J Pharm Sci 27:329–339

    Article  CAS  Google Scholar 

  • Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, Wei Y, Guo X (2023) Gold nanoparticles: construction for drug delivery and application in cancer immunotherapy. Pharmaceutics 15:1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Yuan J, Xie Y, Qing K, Shi Z, Chen G, Gao J, Tan H, Zhou W (2023) Targeting nano-regulator based on metal–organic frameworks for enhanced immunotherapy of bone metastatic prostate cancer. Cancer Nanotechnol 14:43

    Article  CAS  Google Scholar 

  • Izhar MP, Hafeez A, Kushwaha P, Simrah, (2023) Drug delivery through niosomes: a comprehensive review with therapeutic applications. J Cluster Sci 34:2257–2273

    Article  CAS  Google Scholar 

  • Ježková M, Šrom O, George AH, Kereïche S, Rohlíček J, Šoóš M (2023) Quality assessment of niosomal suspensions. J Colloid Interface Sci 631:22–32

    Article  PubMed  Google Scholar 

  • Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA (2020) An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Del Sci Technol 60:102021

    Article  CAS  Google Scholar 

  • Keshtmand Z, Naimi SN, Koureshi Piran Z, Poorjafari Jafroodi P, Tavakkoli Yaraki M (2023) Enhanced anticancer effect of Artemisia turcomanica extract in niosomal formulation on breast cancer cells: In-vitro study. Nano-Structures Nano-Objects 35:101030

    Article  CAS  Google Scholar 

  • Koushki M, Yekta RF, Amiri-Dashatan N (2023) Critical review of therapeutic potential of silymarin in cancer: a bioactive polyphenolic flavonoid. J Funct Foods 104:105502

    Article  CAS  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  • Lee BL, Kuczera K, Middaugh CR, Jas GS (2016) Permeation of the three aromatic dipeptides through lipid bilayers: experimental and computational study. J Chem Phys 144:245103

    Article  PubMed  Google Scholar 

  • Marrink S-J, Berendsen HJ (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  • Maryam S, Bhatti ASA, Shahzad AW (2010) Protective effects of silymarin in isoniazid induced hepatotoxicity in rabbits. Annals King Edward Med Univ 16:43–43

    Google Scholar 

  • Mehrarya M, Gharehchelou B, Haghighi Poodeh S, Jamshidifar E, Karimifard S, Farasati Far B, Akbarzadeh I, Seifalian A (2022) Niosomal formulation for antibacterial applications. J Drug Target 30:476–493

    Article  CAS  PubMed  Google Scholar 

  • Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Hejabi F, Abtahi MS, Ren Q (2023) Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 23:100837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moin A, Patel C, Dave J, Badmanaban R, Patel J (2010) Validated method for silymarin by spectrophotometry in bulk drug and pharmaceutical formulations

  • Momekova DB, Gugleva VE, Petrov PD (2021) Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega 6:33265–33273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nasiri-Foomani N, Ebadi M, Hasani S, Zeinoaldini S, Saedi A, Samadi F (2024a) Preparation, characterization, and ex-vivo evaluation of curcumin-loaded niosomal nanoparticles on the equine sperm quality during cooled storage. International Journal of Biological Macromolecules: 264, 130620

  • Nasiri-Foomani N, Ebadi M, Hassani S, Zeinoaldini S, Saedi A, Samadi F (2024b) Preparation, characterization, and ex-vivo evaluation of curcumin-loaded niosomal nanoparticles on the equine sperm quality during cooled storage. International Journal of Biological Macromolecules 264: 130620

  • Neale C, Pomès R (2016) Sampling errors in free energy simulations of small molecules in lipid bilayers. Biochimica et Biophysica Acta (BBA)- Biomembranes 1858:2539–2548

    Article  CAS  PubMed  Google Scholar 

  • Neale C, Bennett WD, Tieleman DP, Pomes R (2011) Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers. J Chem Theory Comput 7:4175–4188

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Orsi M, Sanderson WE, Essex JW (2009) Permeability of small molecules through a lipid bilayer: a multiscale simulation study. J Phys Chem B 113:12019–12029

    Article  CAS  PubMed  Google Scholar 

  • Paloncýová MT, Berka K, Otyepka M (2012) Convergence of free energy profile of coumarin in lipid bilayer. J Chem Theory Comput 8:1200–1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvathi K, Kesavan MP, Bhaskar R, Renukadevi CR, Ayyanaar S (2024) Targeted drug release and in vitro anticancer activities of iron oxide@ folic acid/chitosan-based nano-niosomes. Colloids Surf Physicochem Eng Aspects 686:133366

    Article  CAS  Google Scholar 

  • Pashizeh F, Mansouri A, Bazzazan S, Abdihaji M, Khaleghian M, Bazzazan S, Rezei N, Eskandari A, Mashayekhi F, Heydari M (2024) Bioresponsive gingerol-loaded alginate-coated niosomal nanoparticles for targeting intracellular bacteria and cancer cells. Int J Biologic Macromol 258:128957

    Article  CAS  Google Scholar 

  • Piri-Gharaghie T, Ghajari G, Hassanpoor M, Jegargoshe-Shirin N, Soosanirad M, Khayati S, Farhadi-Biregani A, Mirzaei A (2023) Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon 9:e14149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poustforoosh A (2024) Investigation on the structural and dynamical properties of Cationic, Anionic, and Catanionic niosomes as multifunctional controlled drug delivery system for Cabozantinib. Colloids Surfaces A Physicochem Eng Aspects 687:133547

    Article  CAS  Google Scholar 

  • Pradeep K, Mohan CVR, Gobianand K, Karthikeyan S (2007) Silymarin modulates the oxidant–antioxidant imbalance during diethylnitrosamine induced oxidative stress in rats. Eur J Pharmacol 560:110–116

    Article  CAS  PubMed  Google Scholar 

  • Rahdar A, Hajinezhad MR, Sargazi S, Zaboli M, Barani M, Baino F, Bilal M, Sanchooli E (2021) Biochemical, ameliorative and cytotoxic effects of newly synthesized curcumin microemulsions: evidence from in vitro and in vivo studies. Nanomaterials 11:817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashidi M-R, Nazemiyeh H (2010) Inhibitory effects of flavonoids on molybdenum hydroxylases activity. Expert Opinion Drug Metab Toxicol 6:133–152

    Article  CAS  Google Scholar 

  • Riazi H, Goodarzi MT, Tabrizi MH, Mozaffari M, Neamati A (2024) Preparation of the myricetin‐loaded PEGylated niosomes and evaluation of their in vitro anti‐cancer potentials. Chem Biodivers e202301767

  • Ritwiset A, Maensiri S, Krongsuk S (2024) Insight into molecular structures and dynamical properties of niosome bilayers containing melatonin molecules: a molecular dynamics simulation approach. RSC Advances 14:1697–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S (2021) Nanomaterials for the diagnosis and treatment of head and neck cancers: a review. Materials 14:3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK (2021) Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 63:102487

    Article  CAS  Google Scholar 

  • Said AAE, Mahmoud BK, Helmy AM, Mohamed NM, Attia EZ, Samy MN, Abdelmohsen UR, Fouad MA (2024) Niosomes as promising approach for enhancing the cytotoxicity of Hemimycale sp. total crude extract supported with in-silico studies. Sci Rep 14:2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangkana S, Eawsakul K, Ongtanasup T, Boonhok R, Mitsuwan W, Chimplee S, Paul AK, Saravanabhavan SS, Mahboob T, Nawaz M (2024) Preparation and evaluation of a niosomal delivery system containing G. mangostana extract and study of its anti-Acanthamoeba activity. Nanoscale Adv 6:1467–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedi F, Sharifi I, Khosravi A, Molaakbari E, Tavakkoli H, Salarkia E, Bahraminejad S, Bamorovat M, Dabiri S, Salari Z (2024) Comparison of cytotoxicity of Miltefosine and its niosomal form on chick embryo model. Sci Rep 14:2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kumari N, Garg D, Chauhan S (2023) A compendium of bioavailability enhancement via niosome technology. Pharm Nanotechnol 11:324–338

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Pei P, Zhang C, Li J, Han X, Liu T, Shi X, Su Z, Han G, Hu L (2023) A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. ACS Nano 17:23998–24011

    Article  CAS  PubMed  Google Scholar 

  • Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613

    Article  CAS  Google Scholar 

  • Tung N-T, Tran C-S, Nguyen H-A, Nguyen T-D, Chi S-C, Pham D-V, Bui Q-D, Ho X-H (2019) Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int J Pharm 555:63–76

    Article  CAS  PubMed  Google Scholar 

  • Tyagi R, Waheed A, Kumar N, Ahad A, Bin Jardan YA, Mujeeb M, Kumar A, Naved T, Madan S (2023) Formulation and evaluation of plumbagin-loaded niosomes for an antidiabetic study: optimization and in vitro evaluation. Pharmaceuticals 16:1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi R, Waheed A, Kumar N, Mujeeb M, Naved T, Rashid Khan M, Alhosaini K, Alqarni YA, Rahat R, Alam P, Madan S (2023) In-vitro and ex-vivo antidiabetic, and antioxidant activities of Box-Behnken design optimized Solanum xanthocarpum extract loaded niosomes. Saudi Pharm J 31:101785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthaiwat P, Priprem A, Puthongking P, Daduang J, Nukulkit C, Chio-Srichan S, Boonsiri P, Thapphasaraphong S (2021) Characteristic evaluation of gel formulation containing niosomes of melatonin or its derivative and mucoadhesive properties using ATR-FTIR spectroscopy. Polymers 13:1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM (2023) Hybrid systems of nanofibers and polymeric nanoparticles for biological application and delivery systems. Micromachines 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadhwa K, Pahwa R, Kumar M, Kumar S, Sharma PC, Singh G, Verma R, Mittal V, Singh I, Kaushik D (2022) Mechanistic insights into the pharmacological significance of silymarin. Molecules 27:5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaolong J, Jianhang G, Jingyuan T, Ke M, Yanqi L (2023) Research progress on degradation methods and product properties of plant polysaccharides. J Light Ind 38

  • Yardımcı M, Göz M, Aydın MS, Kankılıç N, Temiz E (2022) Antioxidant actions of thymoquinone, silymarin, and curcumin on experimental aortic ischemia-reperfusion model in Wistar albino rats. Brazilian J Cardiovasc Surge 37:807–813

    Google Scholar 

  • Yasamineh S, Yasamineh P, Kalajahi HG, Gholizadeh O, Yekanipour Z, Afkhami H, Eslami M, Kheirkhah AH, Taghizadeh M, Yazdani Y (2022) A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 624:121878

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Zhou Y, Zhao H, Wang X (2023) Magnetic microrobots with folate targeting for drug delivery. Cyborg Bionic Syst 4:0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younis MA, Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Harashima H (2022) Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Del Rev 181:114083

    Article  CAS  Google Scholar 

  • Zhao L, Yuan W, Li J, Yang L, Su Y, Peng J, Chen R, Tham HP, Chen H, Lim WQ (2018) Independent of EPR Effect: a smart delivery nanosystem for tracking and treatment of nonvascularized intra-abdominal metastases. Adv Funct Mater 28:1806162

    Article  Google Scholar 

Download references

Funding

Kerman University of Medical Sciences financially supported the current study (Project No. 400000994). Additional in vivo examinations were funded by a grant from the University of Zabol (UOZ-GR-1821).

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Reza Hajinezhad: conceptualization, methodology, data curation, writing—original draft preparation. Maryam Roostaee: investigation, formal analysis, visualization, writing—reviewing and editing. Zahra Nikfarjam: resources, validation, software. Sanaz Rastegar: validation, investigation, writing—reviewing and editing. Ghasem Sargazi: writing—reviewing and editing. Mahmood Barani: methodology; conceptualization; writing—reviewing and editing; supervision. Saman Sargazi: visualization; data curation; writing—original draft preparation; writing—reviewing and editing. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Mahmood Barani or Saman Sargazi.

Ethics declarations

Ethical approval

The protocol of the present study was approved by the local ethics committee of Kerman University of Medical Sciences (Ethical code: IR.KMU.REC.1400.678). The webpage for the ethical certificate is available at https://ethics.research.ac.ir/EthicsProposalView.php?&code=IR.KMU.REC.1400.678.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajinezhad, M.R., Roostaee, M., Nikfarjam, Z. et al. Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03099-3

Keywords

Navigation