Skip to main content

Advertisement

Log in

The Lawson-loaded β-cyclodextrin nanocarriers (LB-NCs) a novel targeted cancer cell in stomach and breast cancer as a drug delivery system

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Applying nanotechnology to design drug delivery systems is a promising turning point in cancer treatment strategies. In the current study, Lawson, a nonpolar anticancer phytochemical, was entrapped into β-cyclodextrin polymer to evaluate its selective cytotoxicity in several types of human cancer cell lines including MCF-7, AGS, A549, and PC3. The Lawson-loaded β-cyclodextrin nanocarriers (LB-NCs) were produced by applying a high-energy ultrasound-mediated homogenization technique. The LB-NCs were characterized by applying dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), zeta potential, and field emission scanning electron microscopy (FESEM) analysis. Also, the selective cytotoxic impact of the LB-NCs was studied by conducting the MTT assay on human MCF-7, AGS, A549, and PC3 cancer cell lines. Finally, the type of cellular death was evaluated by measuring the cell cycle status and apoptotic gene expression profile of the treated MCF-7 cells by conducting flow cytometry and Q-PCR methods, respectively. The synthesized negatively charged (− 23.8 mV) nanoparticles (348.12 nm) exhibited apoptotic activity in the human breast MCF-7 cancer cells by upregulating the apoptotic gene expression profile (Caspase 3, 8, and 9). The LB-NCs exhibited a significant selective cytotoxic effect on the human cancer cell lines compared with the normal HUVEC cells. However, variable toxic intensities were detected depending on the cancer cell type. Selective cancer cell-depended anticancer activity of the produced LB-NCs has the potential to be considered their safe efficient targeted anticancer activity. However, studying the animal cancer models has to be conducted to verify their selective toxicity and clarify the cellular death mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Alagheband Y et al (2022) Design and fabrication of a dual-drug loaded nano-platform for synergistic anticancer and cytotoxicity effects on the expression of leptin in lung cancer treatment. J Drug Deliv Sci Technol 73:103389

    Article  CAS  Google Scholar 

  • Alam J et al (2022) Curcumin encapsulated into biocompatible co-polymer PLGA nanoparticle enhanced anti-gastric cancer and anti-Helicobacter Pylori effect. Asian Pac J Cancer Prev APJCP 23(1):61

    Article  CAS  PubMed  Google Scholar 

  • Archontaki H, Vertzoni M, Athanassiou-Malaki M (2002) Study on the inclusion complexes of bromazepam with β-and β-hydroxypropyl-cyclodextrins. J Pharm Biomed Anal 28(3–4):761–769

    Article  CAS  PubMed  Google Scholar 

  • Arima H et al (1998) Enhancing effect of hydroxypropyl-β-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. Eur J Pharm Sci 6(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Arima H et al (2001) Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J Pharm Sci 90(6):690–701

    Article  CAS  PubMed  Google Scholar 

  • Asadi M et al (2018) Expression level of caspase genes in colorectal cancer. Asian Pac J Cancer Prev APJCP 19(5):1277

    CAS  PubMed  Google Scholar 

  • Azar LK et al (2022) Design and development of nanostructured co delivery of artemisinin and chrysin for targeting hTERT gene expression in breast cancer cell line: possible clinical application in cancer treatment. Asian Pac J Cancer Prev APJCP 23(3):919

    Article  CAS  Google Scholar 

  • Baca JM et al (2022) Cells electric charge analyses define specific properties for cancer cells activity. Bioelectrochemistry 144:108028

    Article  Google Scholar 

  • Barani M et al (2018) Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. DARU J Pharm Sci 26:11–17

    Article  CAS  Google Scholar 

  • Chang Y-L et al (2017) Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget 8(60):101461

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Wu D (2014) Monodisperse BSA-conjugated zinc oxide nanoparticles based fluorescence sensors for Cu2+ ions. Sens Actuators B Chem 192:83–91

    Article  ADS  CAS  Google Scholar 

  • Gadade DD, Pekamwar SS (2020) Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv Pharm Bull 10(2):166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafaripour H et al (2023) Lawsone encapsulated polylactic-co-glycolic acid nanoparticles modified with chitosan-folic acid successfully inhibited cell growth and triggered apoptosis in Panc-1 cancer cells. IET Nanobiotechnol 17(5):425–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemy SI, Seyedi SMR (2021) ROS impacts on cell cycle checkpoint signaling in carcinogenesis. Handbook of oxidative stress in cancer: mechanistic aspects. Springer, Singapore, pp 1–19

    Google Scholar 

  • Hassani N et al (2022) The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nano-particles on breast cancer cell lines: potential apoptotic and anti-proliferative action. Appl Biochem Biotechnol 194(10):4930–4945

    Article  CAS  PubMed  Google Scholar 

  • Hazell S et al (2020) Financial toxicity in lung cancer: an assessment of magnitude, perception, and impact on quality of life. Ann Oncol 31(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Herdiana Y et al (2021) Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers 13(11):1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A et al (2020) Metallodrug-driven combination chemotherapy in cancer treatment. Combination therapy against multidrug resistance. Elsevier, Academic Press, pp 95–110

    Chapter  Google Scholar 

  • Iqbal H et al (2021) Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice. Materials 14(12):3155

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal H et al (2022) pH-responsive albumin-coated biopolymeric nanoparticles with lapatinab for targeted breast cancer therapy. Biomater Adv 139:213039

    Article  PubMed  Google Scholar 

  • Jafari-Gharabaghlou D et al (2023) Potentiation of folate-functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast cancer: possible clinical application. Mol Biol Rep 50(4):3023–3033

    Article  CAS  PubMed  Google Scholar 

  • Jiang H et al (2023) Drug-induced oxidative stress in cancer treatments: angel or devil? Redox Biol 63:102754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L et al (2018) Breast cancer lung metastasis: molecular biology and therapeutic implications. Cancer Biol Ther 19(10):858–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(3):153–163

    Article  CAS  PubMed  Google Scholar 

  • Khatamian N et al (2022) Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent. Inorg Nano-Metal Chem 52(2):253–261

    Article  CAS  Google Scholar 

  • Kimchy AV et al (2022) Breast cancer metastasis to the gastrointestinal tract with unusual endoscopic and histologic presentations. ACG Case Rep J 9(12):e00938

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2023) β-cyclodextrin-based nanosponges for crocetin delivery: physicochemical characterization, aqueous solubility, and bioactivity. J Mol Liq 83:122235

    Article  Google Scholar 

  • Liu Y et al (2023) Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 188:106669

    Article  PubMed  Google Scholar 

  • Long J et al (2024) Combating multidrug resistance of breast cancer with ginsenoside Rh2-irrigated nano-in-thermogel. Int J Pharm 650:123718

    Article  CAS  PubMed  Google Scholar 

  • McMillan DC et al (2004) Role of oxidant stress in lawsone-induced hemolytic anemia. Toxicol Sci 82(2):647–655

    Article  CAS  PubMed  Google Scholar 

  • Moshfegh A et al (2019) Phytochemical analysis, antioxidant, anticancer and antibacterial properties of the Caspian Sea red macroalgae, Laurencia caspica. Iran J Sci Technol Trans A Sci 43:49–56

    Article  Google Scholar 

  • Perlikos F, Harrington KJ, Syrigos KN (2013) Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol 87(1):1–11

    Article  PubMed  Google Scholar 

  • Peters JM, Gonzalez FJ (2018) The evolution of carcinogenesis. Toxicol Sci 165(2):272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourgholi A et al (2021) Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: insight into the apoptotic genes targets. Asian Pac J Cancer Prev APJCP 22(8):2587

    Article  CAS  PubMed  Google Scholar 

  • Rachmawati H, Edityaningrum CA, Mauludin R (2013) Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14:1303–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran R (2009) Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Green Nanotechnol Biomed 1(2):B108–B130

    Google Scholar 

  • Real DA et al (2021) Cyclodextrin-modified nanomaterials for drug delivery: classification and advances in controlled release and bioavailability. Pharmaceutics 13(12):2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogovskii VS (2022) The therapeutic potential of urolithin A for cancer treatment and prevention. Curr Cancer Drug Targets 22(9):717–724

    Article  CAS  PubMed  Google Scholar 

  • Saadaoui S et al (2017) Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes. Beilstein J Nanotechnol 8(1):287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghzadeh F et al (2023) In vitro and in vivo study on the anticancer effects of anethole-loaded bovine serum albumin nanoparticles surface decorated with chitosan and folic acid. Cancer Nanotechnol 14(1):24

    Article  CAS  Google Scholar 

  • Seyedi SMR, Asoodeh A, Darroudi M (2022) The human immune cell simulated anti-breast cancer nanorobot: the efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol 13(1):1–24

    Article  Google Scholar 

  • Shen X et al (2020) PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications. Front Bioeng Biotechnol 8:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltani M et al (2015a) Transcriptional analysis of VEGF-D and TGFβ genes in MCF7 cells exposed to saponin isolated from Holothuria leucospilota (sea cucumber). Rep Biochem Mol Biol 4(1):25

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Soltani M et al (2015b) Putative mechanism for apoptosis-inducing properties of crude saponin isolated from sea cucumber (Holothuria leucospilota) as an antioxidant compound. Iran J Basic Med Sci 18(2):180

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8(4):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaquero-Siguero N et al (2022) Modeling colorectal cancer progression reveals niche-dependent clonal selection. Cancers 14(17):4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veisi A et al (2020) Role of crocin in several cancer cell lines: an updated review. Iran J Basic Med Sci 23(1):3

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Vysyaraju NR et al (2022) Olaparib@ human serum albumin nanoparticles as sustained drug-releasing tumour-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer. J Drug Target 30(10):1088–1105

    CAS  PubMed  Google Scholar 

  • Wang W, Zou W (2020) Amino acids and their transporters in T cell immunity and cancer therapy. Mol Cell 80(3):384–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2021) Preparation of nanoparticles of β-cyclodextrin-loaded scutellarein anti-tumor activity research by targeting integrin α v β3. Cancer Nanotechnol 12:1–15

    Article  Google Scholar 

  • Wang Y et al (2023) Albumin-based nanodevices for breast cancer diagnosis and therapy. J Drug Deliv Sci Technol 79:104072

    Article  CAS  Google Scholar 

  • Wilken R et al (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10(1):1–19

    Article  MathSciNet  Google Scholar 

  • Wongsa P, Phatikulrungsun P, Prathumthong S (2022) FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci Rep 12(1):6631

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasamineh S et al (2022) An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnol 20(1):1–26

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Islamic Azad University, Tehran, Iran, and therefore is appreciated by the author.

Author information

Authors and Affiliations

Authors

Contributions

Ali Kadhim Alwan Alboabdullah: Methodology, Investigation and Writing-Original draft. Mohammad Taghi Goodarzi and Masoud Homayouni Tabrizi: Supervision, Data curation, Conceptualization, Validation and Writing- Reviewing and Editing. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Masoud Homayouni Tabrizi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alboabdullah, A.K.A., Goodarzi, M.T. & Homayouni Tabrizi, M. The Lawson-loaded β-cyclodextrin nanocarriers (LB-NCs) a novel targeted cancer cell in stomach and breast cancer as a drug delivery system. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03042-6

Keywords

Navigation