Skip to main content

Advertisement

Log in

Advances in microscopy characterization techniques for lipid nanocarriers in drug delivery: a comprehensive review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This review paper provides an in-depth analysis of the significance of lipid nanocarriers in drug delivery and the crucial role of characterization techniques. It explores various types of lipid nanocarriers and their applications, emphasizing the importance of microscopy-based characterization methods such as light microscopy, confocal microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The paper also delves into sample preparation, quantitative analysis, challenges, and future directions in the field. The review concludes by underlining the pivotal role of microscopy-based characterization in advancing lipid nanocarrier research and drug delivery technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbasi H et al (2022) Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Lipos Res 32(2):195–210

    Article  CAS  Google Scholar 

  • Ahmad A, Ahsan H (2020) Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed Dermatol 4(1):12

    Article  Google Scholar 

  • Alam SB et al (2022) Dynamics of polymer nanocapsule buckling and collapse revealed by in situ liquid-phase TEM. Langmuir 38(23):7168–7178

    Article  CAS  PubMed  Google Scholar 

  • Alyamani A, Lemine O (2012) FE-SEM characterization of some nanomaterial, in Scanning electron microscopy. IntechOpen

  • Amelinckx S et al (2008) Electron microscopy: principles and fundamentals. John Wiley & Sons

  • Arana L et al (2019) Solid lipid nanoparticles surface modification modulates cell internalization and improves chemotoxic treatment in an oral carcinoma cell line. Nanomaterials 9(3):464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakken IM et al (2022) The use of in vivo confocal microscopy in fungal keratitis–Progress and challenges. Ocular Surface 24:103–118

    Article  PubMed  Google Scholar 

  • Beveridge TJ, Lawrence JR, Murray RG (2007) Sampling and staining for light microscopy. Methods Gen Mol Microbiol, p 19-33

  • Cao C et al (2022) webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucl Acids Res 50(D1):D1123–D1130

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Chai X-N et al (2023) Effects of lifestyle intervention on adults with metabolic associated fatty liver disease: a systematic review and meta-analysis. Front Endocrinol 14:1081096

    Article  Google Scholar 

  • Chaiin P et al (2022) Self-calcifying lipid nanocarrier for bone tissue engineering. Biochimica et Biophysica Acta (BBA) - General Subjects 1866(2):130047

    Article  CAS  PubMed  Google Scholar 

  • Chauhan I et al (2020) Nanostructured lipid carriers: a groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 10(2):150–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan N et al (2022) Ethosomes: a novel drug carrier. Annals Med Surg 82:104595

    Article  Google Scholar 

  • Chen C et al (2023) Characterization of lipid-based nanomedicines at the single-particle level. Fund Res 3(4):488–504

    CAS  Google Scholar 

  • Cheng F et al (2024) Resilient distributed secure consensus control for uncertain networked agent systems under hybrid DoS attacks. Commun Nonlin Sci Numeric Simulat 129:107689

    Article  MathSciNet  Google Scholar 

  • Clementino A et al (2021) Hybrid nanoparticles as a novel tool for regulating psychosine-induced neuroinflammation and demyelination in vitro and ex vivo. Neurotherapeutics, p 1-15

  • Davies TE et al (2022) Experimental methods in chemical engineering: scanning electron microscopy and X-ray ultra-microscopy—SEM and XuM. Canadian J Chem Eng 100(11):3145–3159

    Article  CAS  Google Scholar 

  • Dhiman N et al (2021) Lipid nanoparticles as carriers for bioactive delivery. Front Chem 9:580118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y et al (2020) A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances 10(45):26777–26791

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Echlin P (2011) Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Springer Science & Business Media

  • El Kirat K et al (2005) Sample preparation procedures for biological atomic force microscopy. J Microscop 218(3):199–207

    Article  MathSciNet  ADS  Google Scholar 

  • Elliott AD (2020) Confocal microscopy: principles and modern practices. Curr Protoc Cytomet 92(1):e68

    Article  Google Scholar 

  • Eygeris Y et al (2020) Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett 20(6):4543–4549

    Article  CAS  PubMed  ADS  Google Scholar 

  • Eygeris Y et al (2022) Chemistry of lipid nanoparticles for RNA delivery. Accounts Chem Res 55(1):2–12

    Article  CAS  Google Scholar 

  • Francia V et al (2020) The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjugate Chem 31(9):2046–2059

    Article  CAS  Google Scholar 

  • Fu S et al (2023) Comparison of surgical excision followed by adjuvant radiotherapy and laser combined with steroids for the treatment of keloids: A systematic review and meta-analysis. Int Wound J 21(3):e14449

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan Y et al (2023) Revisiting supersaturation of a biopharmaceutical classification system IIB drug: evaluation via a multi-cup dissolution approach and molecular dynamic simulation. Molecules 28(19):6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2021) UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Lett 520:172–183

    Article  CAS  PubMed  Google Scholar 

  • Gomez AI et al (2020) Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery. Pulmon Pharmacol Ther 64:101975

    Article  CAS  Google Scholar 

  • Gonçalves C et al (2021) Lipid nanoparticles containing mixtures of antioxidants to improve skin care and cancer prevention. Pharmaceutics 13(12):2042

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo W et al (2022) Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol Res 182:106355

    Article  CAS  PubMed  Google Scholar 

  • Gupta P et al (2024) Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 44:138–168

    Article  CAS  PubMed  Google Scholar 

  • Hald Albertsen C et al (2022) The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 188:114416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallan SS et al (2021) Challenges in the physical characterization of lipid nanoparticles. Pharmaceutics 13(4):549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PJ et al (2021) Deep-learning models for lipid nanoparticle-based drug delivery. Nanomedicine 16(13):1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Henning S, Adhikari R (2017) Scanning electron microscopy, ESEM, and X-ray microanalysis. Microscopy methods in nanomaterials characterization. Elsevier, pp 1–30

    Google Scholar 

  • Hyams TC, Mam K, Killingsworth MC (2020) Scanning electron microscopy as a new tool for diagnostic pathology and cell biology. Micron 130:102797

    Article  Google Scholar 

  • Inkson BJ (2016) Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials characterization using nondestructive evaluation (NDE) methods. Elsevier, pp 17–43

    Chapter  Google Scholar 

  • Jain AK, Thareja S (2019) In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 47(1):524–539

    Article  CAS  PubMed  Google Scholar 

  • Kaliamurthi S et al (2019) Synergism of essential oils with lipid based nanocarriers: emerging trends in preservation of grains and related food products. Grain Oil Sci Technol 2(1):21–26

    Article  Google Scholar 

  • Kannan, M (2018) Transmission electron microscope—principle, components and applications. A textbook on fundamentals and applications of nanotechnology, p 93-102

  • Kehlenbeck DM et al (2022) Cryo-EM structure of MsbA in saposin-lipid nanoparticles (Salipro) provides insights into nucleotide coordination. FEBS J 289(10):2959–2970

    Article  CAS  PubMed  Google Scholar 

  • Krieg M et al (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1(1):41–57

    Article  Google Scholar 

  • Kumar R et al (2020) Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. Mater Sci Eng C 106:110184

    Article  CAS  Google Scholar 

  • Lee C-Y et al (2022) Fabrication of doxorubicin-loaded lipid-based nanocarriers by microfluidic rapid mixing. Biomedicines 10(6):1259

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X et al (2022) Gli1 promotes epithelial–mesenchymal transition and metastasis of non-small cell lung carcinoma by regulating snail transcriptional activity and stability. Acta Pharmaceutica Sinica B 12(10):3877–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X et al (2007) Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 311(1):106–111

    Article  CAS  Google Scholar 

  • Liu M-X et al (2021) One-step synthesis of carbon nanoparticles capable of long-term tracking lipid droplet for real-time monitoring of lipid catabolism and pharmacodynamic evaluation of lipid-lowering drugs. Anal Chem 93(12):5284–5290

    Article  CAS  PubMed  Google Scholar 

  • Liu R et al (2023) Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chem Lett 34(2):107518

    Article  CAS  ADS  Google Scholar 

  • Liu S et al (2024) Self-triggered fixed-time bipartite fault-tolerant consensus for nonlinear multiagent systems with function constraints on states. Chaos, Solitons & Fractals 178:114367

    Article  MathSciNet  Google Scholar 

  • Lombardo D, Kiselev MA (2022) Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 14(3):543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long D et al (2021) Atomic force microscopy to characterize ginger lipid-derived nanoparticles (GLDNP). Bio-protocol 11(7):e3969–e3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H et al (2021) A Review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutri 8:783831

    Article  Google Scholar 

  • Lu G et al (2023) Development of a colorimetric and turn-on fluorescent probe with large Stokes shift for H2S detection and its multiple applications in environmental, food analysis and biological imaging. Dyes and Pigments 220:111687

    Article  CAS  Google Scholar 

  • Lu G et al (2024) New 1, 8-naphthalimide-based colorimetric fluorescent probe for specific detection of hydrazine and its multi-functional applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 305:123450

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Wang Q, Zhang Y (2020) Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: a perspective on the past, present, and future. J Agric Food Chem 68(46):12993–13000

    Article  CAS  PubMed  Google Scholar 

  • Magalhães J et al (2020) Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine 15(3):259–271

    Article  PubMed  Google Scholar 

  • Maharjan R et al (2023) Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach. Int J Pharm 640:123012

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Mandal UK (2017) Morphological characterization of lipid structured nanoparticles by atomic force microscopy while minimizing the formation of failed artefacts. Curr Nanomater 2(1):24–32

    Article  CAS  Google Scholar 

  • Mahmoud NA et al (2023) Apocynin and its chitosan nanoparticles attenuated cisplatin-induced multiorgan failure: Synthesis, characterization, and biological evaluation. Life Sci 314:121313

    Article  CAS  PubMed  Google Scholar 

  • Manaia EB et al (2017) Physicochemical characterization of drug nanocarriers. Int J Nanomed, p 4991-5011

  • Mariano RG et al (2020) Comparing scanning electron microscope and transmission electron microscope grain mapping techniques applied to well-defined and highly irregular nanoparticles. ACS Omega 5(6):2791–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra S (2004) Sample preparation techniques in analytical chemistry. 2004: John Wiley & Sons

  • Montoto SS et al (2018) Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: physicochemical characterization and in vitro/in vivo evaluation. Colloids and Surfaces B: Biointerfaces 167:73–81

    Article  Google Scholar 

  • Neupane YR et al (2014) Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm 477(1):601–612

    Article  CAS  PubMed  Google Scholar 

  • Ningyuan Z, Suping Y (2022) Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy. Coal Geol Explor 50(5):5

    Google Scholar 

  • Ohtani O et al (1988) Collagen fibrillar networks as skeletal frameworks: a demonstration by cell-maceration/scanning electron microscope method. Arch Histol Cytol 51(3):249–261

    Article  CAS  PubMed  Google Scholar 

  • Paiva-Santos AC et al (2021) Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res 38(6):947–970

    Article  CAS  PubMed  Google Scholar 

  • Pandur Ž et al (2020) Liposome destruction by hydrodynamic cavitation in comparison to chemical, physical and mechanical treatments. Ultrason Sonochem 61:104826

    Article  CAS  PubMed  Google Scholar 

  • Parvez S et al (2020) Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep 10(1):12243

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Pathan A, Bond J, Gaskin R (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39(8):1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Pavlou P et al (2021) Skin care formulations and lipid carriers as skin moisturizing agents. Cosmetics 8(3):89

    Article  CAS  Google Scholar 

  • Petkov N (2013) In situ real-time TEM reveals growth, transformation and function in one-dimensional nanoscale materials: from a nanotechnology perspective. Int Scholar Res Notices 2013:1

    Google Scholar 

  • Prabhu A et al (2022) Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: an in vitro and in vivo study. AAPS PharmSciTech 23(1):49

    Article  CAS  PubMed  Google Scholar 

  • Prabhu A et al (2022) Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: an in vitro and in vivo study. AAPS PharmSciTech 23:1–12

    Article  Google Scholar 

  • Raj S et al (2021) Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 69:166–177

    Article  CAS  PubMed  Google Scholar 

  • Raman S, Khan AA, Mahmood S (2022) Nose to brain delivery of selegiline loaded PLGA/lipid nanoparticles: synthesis, characterisation and brain pharmacokinetics evaluation. J Drug Deliv Sci Technol 77:103923

    Article  CAS  Google Scholar 

  • Ritter M et al (1999) A versatile high-vacuum cryo-transfer for cryo-FESEM, cryo-SPM and other imaging techniques. Microsc Microanal 5(S2):424–425

    Article  Google Scholar 

  • Robinson M et al (2023) Atomic force microscopy and other scanning probe microscopy methods to study nanoscale domains in model lipid membranes. Adv Phys X 8(1):2197623

    MathSciNet  Google Scholar 

  • Robson A-L et al (2018) Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohde F, Braumann UD, Schmidt M (2020) Correlia: an ImageJ plug-in to co-register and visualise multimodal correlative micrographs. J Microscop 280(1):3–11

    Article  CAS  Google Scholar 

  • Ruozi B et al (2011) AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomed 6:557–563

    Article  CAS  Google Scholar 

  • Satapathy MK et al (2021) Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics 13(8):1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe A, Gordon KC, Rades T (2006) Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 314(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Scheideler M, Vidakovic I, Prassl R (2020) Lipid nanocarriers for microRNA delivery. Chem Phys Lipids 226:104837

    Article  CAS  PubMed  Google Scholar 

  • Scioli Montoto, S, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological andbiopharmaceutical aspects. Front Mol Biosci, 7

  • Shah S et al (2022) Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloid and Interface Science Communications 46:100570

    Article  CAS  Google Scholar 

  • Shen FY et al (2020) Light microscopy based approach for mapping connectivity with molecular specificity. Nat Commun 11(1):4632

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Strachan JB et al (2020) Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. J Colloid Interface Sci 576:241–251

    Article  CAS  PubMed  ADS  Google Scholar 

  • Šturm L, Ulrih NP (2021) Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. Int J Mol Sci 22(12):6547

    Article  PubMed  PubMed Central  Google Scholar 

  • Su M et al (2023) Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol 13:1085092

    Article  Google Scholar 

  • Takechi-Haraya Y, Goda Y, Sakai-Kato K (2018) Atomic force microscopy study on the stiffness of nanosized liposomes containing charged lipids. Langmuir 34(26):7805–7812

    Article  CAS  PubMed  Google Scholar 

  • Takechi-Haraya Y et al (2023) Atomic force microscopic imaging of mRNA-lipid nanoparticles in aqueous medium. J Pharm Sci 112(3):648–652

    Article  CAS  PubMed  Google Scholar 

  • Thorn K (2016) A quick guide to light microscopy in cell biology. Molecular biology of the cell 27(2):219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tizro P, Choi C, Khanlou N (2019) Sample preparation for transmission electron microscopy. Biobanking: methods and protocols, 417-424

  • Torres EJL, de Souza W, Miranda K (2013) Comparative analysis of Trichuris muris surface using conventional, low vacuum, environmental and field emission scanning electron microscopy. Veterin Parasitol 196(3–4):409–416

    Article  Google Scholar 

  • Vicas SI et al (2021) Preparation and characterization of two different liposomal formulations with bioactive natural extract for multiple applications. Processes 9(3):432

    Article  Google Scholar 

  • Voigtländer B (2019) Atomic force microscopy. Springer

  • Wahane A et al (2020) Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 25(12):2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. ACS Publications. p 1153-1175

  • Wang J et al (2020) Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharmaceutica Sinica B 10(2):313–326

    Article  PubMed  Google Scholar 

  • Wang K et al (2022) Starch–protein interaction effects on lipid metabolism and gut microbes in host. Front Nutr 9:1018026

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Wang K et al (2022) Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Front Nutr 9:1024722

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Weihs T et al (1991) Limits of imaging resolution for atomic force microscopy of molecules. Appl Phys Lett 59(27):3536–3538

    Article  CAS  ADS  Google Scholar 

  • Xia F, Youcef-Toumi K (2022) Advanced atomic force microscopy modes for biomedical research. Biosensors 12(12):1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang J et al (2023) Cryopreservation of bioflavonoid-rich plant sources and bioflavonoid-microcapsules: emerging technologies for preserving bioactivity and enhancing nutraceutical applications. Front Nutr 10:1232129

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Q-Y et al (2023) Image-based visualization of stents in mechanical thrombectomy for acute ischemic stroke: Preliminary findings from a series of cases. World J Clin Cases 11(21):5047

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi X et al (2018) Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J Cancer 9(19):3577

    Article  PubMed  PubMed Central  Google Scholar 

  • Youssef AAA, Dudhipala N, Majumdar S (2022) Dual drug loaded lipid nanocarrier formulations for topical ocular applications. Int J Nanomed 17:2283–2299

    Article  Google Scholar 

  • Yuan J et al (2020) Comparison of sample preparation techniques for inspection of leaf epidermises using light microscopy and scanning electronic microscopy. Front Plant Sci 11:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z et al (2020) Applications of ESEM on materials science: recent updates and a look forward. Small Methods 4(2):1900588

    Article  CAS  Google Scholar 

  • Zhang L et al (2020) Homotypic targeting delivery of siRNA with artificial cancer cells. Adv Healthcare Mater 9(9):1900772

    Article  CAS  Google Scholar 

  • Zhang X et al (2020) Understanding the learning mechanism of convolutional neural networks in spectral analysis. Anal Chim Acta 1119:41–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2022) Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinformat 17(5):473–482

    Article  CAS  Google Scholar 

  • Zhang R et al (2024) Recent advances of nanomaterials for intervention in Parkinson’s disease in the context of anti-inflammation. Coordinat Chem Rev 502:215616

    Article  CAS  Google Scholar 

  • Zhu D et al (2018) Investigating the intracellular behaviors of liposomal nanohybrids via SERS: Insights into the influence of metal nanoparticles. Theranostics 8(4):941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZurMühlen A et al (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13(9):1411–6

    Article  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for financially supporting this work through the Large Research Group Project under Grant no. R.G.P.2/557/44.

Author information

Authors and Affiliations

Authors

Contributions

Authors for conceptualization include Mohamed J. Saadh and Huda Hayder Abbas. Methodology is handled by Mohammed Ali Shallan and Ahmed Elawady, while software is managed by Uday Abdul-Reda Hussein and Irfan Ahmed. Saeb Jasim Al-shuwaili and Noor Alhuda Mohammad Ali Khalil lead the investigation, with validation overseen by Amjed Qasim Mohammed. Supervision is carried out by Ahmed Elawady, and Mukaram Shikara is responsible for visualization, and resources are managed by Ahmed Ali Ami. The original draft is written by Mohamed J. Saadh, Mohammed Ali Shallan, Uday Abdul-Reda Hussein, Amjed Qasim Mohammed, Saeb Jasim Al-shuwaili, Mukaram Shikara, Ahmed Ali Ami, Noor Alhuda Mohammad Ali Khalil, Irfan Ahmed, Huda Hayder Abbas, and Ahmed Elawady. Ahmed Elawady is responsible for review and editing. All authors have reviewed the final version of the manuscript and have given their approval for submission. The authors confirm that no paper  mill and artificial intelligence was used.

Corresponding author

Correspondence to Ahmed Elawady.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

There are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadh, M.J., Shallan, M.A., Hussein, U.AR. et al. Advances in microscopy characterization techniques for lipid nanocarriers in drug delivery: a comprehensive review. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03033-7

Keywords

Navigation