Skip to main content
Log in

Preventive effects of Ramelteon on bleomycin-induced pulmonary fibrosis in mice

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Pulmonary fibrosis (PF) is a devastating lung disease that leads to impaired lung function and ultimately death. Several studies have suggested that melatonin, a hormone involved in regulating sleep–wake cycles, may be effective in improving PF. Ramelteon, an FDA-approved melatonin receptor agonist, has shown promise in exerting an anti-PF effect similar to melatonin. However, further investigations are required for illuminating the extent on its therapeutic benefits and the underlying molecular mechanisms. In this work, a mouse lung fibrosis model was built through intratracheal administration of bleomycin (BLM). Subsequently, the mice were administrated Ramelteon for a duration of 3 weeks to explore its efficacy and mechanism of action. Additionally, we utilized a TGF-β1-induced MRC-5 cell model to further investigate the molecular mechanism underlying ramelteon’s effects. Functionally, Ramelteon partially abrogated TGF-β1-induced pulmonary fibrosis and reduced fibroblast proliferation, extracellular matrix deposition, and differentiation into myofibroblasts. In vivo experiments, ramelteon attenuated BLM-induced pulmonary fibrosis and collagen deposition. Mechanistically, ramelteon exerts its beneficial effect by alleviating translocation and expression of YAP1, a core component of Hippo pathway, from cytoplasm to nucleus; however, overexpression of YAP1 reversed this effect. In conclusion, our findings indicate that ramelteon can improve PF by regulating Hippo pathway and may become a potential candidate as a therapy to PF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Amati F, Stainer A, Polelli V, Mantero M, Gramegna A, Blasi F, Aliberti S (2023) Efficacy of pirfenidone and nintedanib in interstitial lung diseases other than idiopathic pulmonary fibrosis: a systematic review. Int J Mol Sci 24(18):7849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armagan I, Asci H, Erzurumlu Y, Ozkula S, Hasseyid N, Doguc DK, Okuyucu G, Varel A (2023) Ramelteon and mechanism of its restorative effect in an experimental lung disease model. Toxicol Mech Method 33:239–247

    Article  CAS  Google Scholar 

  • Bian FH, Lan YW, Zhao SY, Deng ZC, Shukla S, Acharya A, Donovan J, Le T, Milewski D, Bacchetta M, Hozain AE, Tipograf Y, Chen YW, Xu Y, Shi DL, Kalinichenko VV, Kalin TV (2023) Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat. Commun 14(20):2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buysse D, Bate G, Kirkpatrick P (2005) Fresh from the pipeline: Ramelteon. Nat Rev Drug Discov 4:881–882

    Article  CAS  PubMed  Google Scholar 

  • Chen YZ, Zhao XG, Sun J, Su W, Zhang L, Li YN, Liu YQ, Zhang LJ, Lu YJ, Shan HL, Liang HH (2019) YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF. Cell Death Differ 26:1832–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuesta VMM, Fernandez DI, Ibanez SA, de Francisco GA, Iribarnegaray JM, Hernandez-Rubio JC, Mezquida JPR, Luz VP, Hernandez RL, Gafas AD, Jover AS, Martinez JMC (2022) Antifibrotics and lung transplantation: a Spanish multicentre case-controlled study. Respirology 27:1054–1063

    Article  Google Scholar 

  • Ghaderi A, Okhovat MA, Lehto J, De Petris L, Doulabi EM, Kokhaei P, Zhong W, Rassidakis GZ, Drakos E, Moshfegh A, Schultz J, Olin T, Osterborg A, Mellstedt H, Hojjat-Farsangi M (2023) A small molecule targeting the intracellular tyrosine kinase domain of ROR1 (KAN0441571C) induced significant apoptosis of non-small cell lung cancer (NSCLC) Cells. Pharmaceutics 15(16):1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haak AJ, Ducharme MT, Diaz Espinosa AM, Tschumperlin DJ (2020) Targeting GPCR signaling for idiopathic pulmonary fibrosis therapies. Trends Pharmacol Sci 41:172–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LS, Sudhadevi T, Fu PF, Punathil-Kannan PK, Ebenezer DL, Ramchandran R, Putherickal V, Cheresh P, Zhou G, Ha AW, Harijith A, Kamp DW, Natarajan V (2020) Sphingosine kinase 1/S1P signaling contributes to pulmonary fibrosis by activating Hippo/YAP pathway and mitochondrial reactive oxygen species in lung fibroblasts. Int J Mol Sci 21:2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan YJ, Cheng MH, Ji HM, Bi YQ, Han YY, Yang CY, Gu X, Gao J, Dong HL (2023) Melatonin ameliorates bleomycin-induced pulmonary fibrosis via activating NRF2 and inhibiting galectin-3 expression. Acta Pharmacol Sin 44:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Zhang F, Qu LL, Xie Y, Ruan YN, Guo ZW, Mao YW, Zou Q, Shi MJ, Xiao Y, Wang YY, Zhou YX, Guo B (2021) Identification of YAP1 as a novel downstream effector of the FGF2/STAT3 pathway in the pathogenesis of renal tubulointerstitial fibrosis. J Cell Physiol 236:7655–7671

    Article  CAS  PubMed  Google Scholar 

  • Li TY, Su W, Li LL, Zhao XG, Yang N, Gai JX, Lv X, Zhang J, Huang MQ, Zhang Q, Ji WH, Song XY, Zhou YH, Li XL, Shan HL, Liang HH (2022) Critical role of PAFR/YAP1 positive feedback loop in cardiac fibrosis. Acta Pharmacol Sin 43:2862–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YL, Wang LX, Du N, Yin XL, Shao HT, Yang L (2021) Ramelteon ameliorates LPS-induced hyperpermeability of the blood-brain barrier (BBB) by activating Nrf 2. Inflammation 44:1750–1761

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Chen SY, Yu L, Deng Y, Li DF, Yu X, Chen DD, Lu Y, Liu SM, Chen RC (2022) Pemafibrate attenuates pulmonary fibrosis by inhibiting myofibroblast differentiation. Int Immunopharmacol 108:108728

    Article  CAS  PubMed  Google Scholar 

  • Luo JH, Zhang ZG, Sun HQ, Song J, Chen XZ, Huang JX, Lin XP, Zhou RX (2020) Effect of melatonin on T/B cell activation and immune regulation in pinealectomy mice. Life Sci 242:117191

    Article  CAS  PubMed  Google Scholar 

  • Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H, Wells AU (2017) Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3:17074

    Article  PubMed  Google Scholar 

  • Mia MM, Singh MK (2022) New insights into Hippo/YAP signaling in fibrotic diseases. Cells-Basel 11:2065

    Article  CAS  Google Scholar 

  • Miyamoto M (2009) Pharmacology of Ramelteon, a selective MT1/MT2 receptor agonist: a novel therapeutic drug for sleep disorders. Cns Neurosci Ther 15:32–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, Hu QJ, Iguchi T, Kuroda Y, Ito S, Eguchi H, Sugimachi K, Saeki H, Oki E, Maehara Y, Suzuki A, Mimori K (2017) Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget 8:107666–107677

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandi-Perumal SR, Seils LK, Kayumov L, Ralph MR, Lowe A, Moller H, Swaab DF (2002) Senescence, sleep, and circadian rhythms. Ageing Res Rev 1:559–604

    Article  CAS  PubMed  Google Scholar 

  • Salloum S, Jeyarajan AJ, Kruger AJ, Holmes JA, Shao T, Sojoodi M, Kim MH, Zhuo Z, Shroff SG, Kassa A, Corey KE, Khan SK, Lin WY, Alatrakchi N, Schaefer EAK, Chung RT (2021) Fatty acids activate the transcriptional goactivator YAP1 to promote liver fibrosis via p38 mitogen-activated protein kinase. Cell Mol Gastroenter 12:1297–1310

    CAS  Google Scholar 

  • Sateia MJ, Kirby-Long P, Taylor JL (2008) Efficacy and clinical safety of ramelteon: an evidence-based review. Sleep Med Rev 12:319–332

    Article  PubMed  Google Scholar 

  • Shochet GE, Bardenstein-Wald B, McElroy M, Kukuy A, Surber M, Edelstein E, Pertzov B, Kramer MR, Shitrit D (2021) Hypoxia inducible factor 1A supports a pro-fibrotic phenotype loop in idiopathic pulmonary fibrosis. Int J Mol Sci 22:3331

    Article  CAS  Google Scholar 

  • Stroethoff M, Christoph I, Behmenburg F, Raupach A, Bunte S, Senpolat S, Heinen A, Hollmann MW, Mathes A, Huhn R (2018) Melatonin receptor agonist Ramelteon reduces ischemia-reperfusion injury through activation of mitochondrial potassium channels. J Cardiovasc Pharm 72:106–111

    Article  CAS  Google Scholar 

  • Sun J, Jin TZ, Niu ZH, Guo JY, Guo YY, Yang RX, Wang QQ, Gao HY, Zhang YH, Li TY, He WX, Li ZX, Ma WC, Su W, Li LL, Fan XX, Shan HL, Liang HH (2022) LncRNA DACH1 protects against pulmonary fibrosis by binding to SRSF1 to suppress CTNNB1 accumulation. Acta Pharm Sin B 12:3602–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XP, Wang GY, Qu JW, Yuan ZQ, Pan RG, Li KW (2020) Calcipotriol inhibits NLRP3 signal through YAP1 activation to alleviate cholestatic liver injury and fibrosis. Front Pharmacol 11:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XL, Lu SS, Liu MR, Tang WD, Chen JZ, Zheng YR, Ahsan A, Cao M, Jiang L, Hu WW, Wu JY, Chen Z, Zhang XN (2020a) Melatonin receptor agonist ramelteon attenuates mouse acute and chronic ischemic brain injury. Acta Pharmacol Sin 41:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ (2020b) Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Resp Res 21:65

    Article  CAS  Google Scholar 

  • Yang WJ, Zhang Y, Lu DH, Huang TF, Yan KS, Wang WW, Gao J (2022) Ramelteon protects against human pulmonary microvascular endothelial cell injury induced by lipopolysaccharide (LPS) via activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Bioengineered 13:1518–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao JG, Yuan HX, Tumaneng K, Li HR, Fu XD, Mills GB, Guan KL (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan P, Lu X, Li Z, Wang WJ, Peng K, Liang NN, Wang Y, Li J, Fu L, Zhao H, Xu DX, Tan ZX (2022) Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int. Immunopharmacol 113(10):109359

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Zhang YQ (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57:131–146

    Article  CAS  PubMed  Google Scholar 

  • Zhao XG, Sun J, Su W, Shan HT, Zhang BW, Wang YN, Shabanova A, Shan HL, Liang HH (2018a) Melatonin protects against lung fibrosis by regulating the Hippo/YAP pathway. Int J Mol Sci 19:1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XG, Sun J, Chen YZ, Su W, Shan HT, Li Y, Wang YN, Zheng N, Shan HL, Liang HH (2018b) lncRNA PFAR promotes lung fibroblast activation and fibrosis by targeting miR-138 to regulate the YAP1-Twist axis. Mol Ther 26:2206–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YG, Pan DJ (2019) The Hippo signaling pathway in development and disease. Dev Cell 50:264–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shenzhen University Health Science Center for instrumental support.

Funding

This study was supported by the National Natural Science Foundation of China (U21A20339, 32171127) and the Outstanding Youth Scientific Fund Project of Heilongjiang Province (JQ2022H001).

Author information

Authors and Affiliations

Authors

Contributions

Haihai Liang and Lei Zhang conceived and designed the study. Lei Zhang performed cell experiments, analyzed the data. Ting Cheng was involved in the animal and cell experiments. Wenxian Chen, Changsheng Zhong, and Mengyang Li assisted the animal experiments. Yilin Xie assisted the cell experiments. Qin Deng and Huifang Wang assisted some Immunohistochemistry experiments. Zhenbo Yang and Jin Ju assisted some Western Blotting experiments. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Haihai Liang.

Ethics declarations

Ethics approval

All animal experiments performed the standards of the Ethics Committee of the College of Pharmacy, Harbin Medical University (Ethical approval number: IRB3035621).

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Cheng, T., Chen, W. et al. Preventive effects of Ramelteon on bleomycin-induced pulmonary fibrosis in mice. Naunyn-Schmiedeberg's Arch Pharmacol (2023). https://doi.org/10.1007/s00210-023-02867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-023-02867-x

Keywords

Navigation