Skip to main content

Advertisement

Log in

Antitumor effect of tubeimoside-I on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Induction of cancer cell death is an established treatment strategy, but chemotherapy drug-mediated apoptosis can be evaded by many tumors. Pyroptosis is a type of inflammatory programmed cell death (PCD) that is important for organism immunity. Tubeimoside-I (TBMS1) is a plant-derived component that exhibits antitumor activity. However, it is unclear how TBMS1 induces pyroptosis to inhibit colorectal cancer (CRC). In this study, we demonstrated that TBMS1 is able to induce pyroptosis in murine CRC cells and releases pro-inflammatory cytokines. Mechanistically, we found that TBMS1 inhibits CRC cell proliferation and migration and induces pyroptosis by activating caspase-3 and cleaving gasdermin E (GSDME) through the inhibition of PKM2. In the animal experiments, TBMS1 attenuated the weight of solid tumors, increased the proportion of CD8+ cytotoxic T cells, and reduced the content of M2-type macrophages in the spleen of tumor-bearing mice. Furthermore, TBMS1 inhibited M2-type polarization by blocking STAT6 pathway activation in RAW 264.7 cells. To sum up, our findings suggest that TBMS1 triggers pyroptosis in CRC by acting on the PKM2/caspase-3/GSDME signaling pathway. Additionally, it modulates the antitumor immune response in CRC murine models. This study provides a promising basis for the potential use of TBMS1 in treating CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors, upon reasonable request.

Abbreviations

CRC:

Colorectal cancer

CRS:

Cytoreductive surgery

PCD:

Programmed cell death

PKM2:

Pyruvate kinase M2

TBMS1:

Tubeimoside-1

GSDME:

Gasdermin E

FBS:

Fetal bovine serum

DMSO:

Dimethyl sulfoxide

DMEM:

Dulbecco’s modified Eagle’s medium

CCK-8:

Counting Kit-8

ELISA:

Enzyme-linked immunosorbent assay

ARG1:

Arginase 1

IL-10:

Interleukin 10

IL-4:

Interleukin 4

IL-18:

Interleukin 18

IL-1β:

Interleukin 1 β

IFN-γ:

Interferon γ

IC50 :

Half maximal inhibitory concentration

References

  • Bando H, Ohtsu A, Yoshino T (2023) Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 20:306–322

    Article  CAS  PubMed  Google Scholar 

  • Bedoui S, Herold MJ, Strasser A (2020) Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 21(11):678–695

    Article  CAS  PubMed  Google Scholar 

  • Biller LH, Schrag D (2021) Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA 325(7):669–685

    Article  CAS  PubMed  Google Scholar 

  • Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerella C, Teiten M-H, Radogna F, Dicato M, Diederich M (2014) From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 32(6):1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Weng B, Li H, Wang H, Li Q, Wei X, Deng H, Wang S, Jiang C, Lin R, Wu J (2019) A thiopyran derivative with low murine toxicity with therapeutic potential on lung cancer acting through a NF-κB mediated apoptosis-to-pyroptosis switch. Apoptosis 24(1):74–82

    Article  CAS  PubMed  Google Scholar 

  • D’Souza CA, Heitman J (2001) Dismantling the Cryptococcus coat. Trends Microbiol 9(3):112–113

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281(1):8–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Wang H, Yang JJ, Liu X, Liu Z-R (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 45(5):598–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849

    Article  CAS  PubMed  Google Scholar 

  • He W-T, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang Z-H, Zhong C-Q, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu MC, Hung WC (2018) Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer 17(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu SK, Li CY, Lin IL, Syue WJ, Chen YF, Cheng KC, Teng YN, Lin YH, Yen CH, Chiu CC (2021) Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 11(18):8813–8835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Wang C, Zheng J, Paudyal N, Zhu Y, Sun H (2019) The potential role of tubeimosides in cancer prevention and treatment. Eur J Med Chem 162:109–121

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Wu Y, Qi L, Li L, Song D, Gan J, Li Y, Ling X, Song C (2021) Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma. Chem Biol Interact 350:109704

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A, Bachovchin DA (2018) DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 24(8):1151–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joosten LA, Netea MG, Dinarello CA (2013) Interleukin-1beta in innate inflammation, autophagy and immunity. Semin Immunol 25(6):416–424

    Article  CAS  PubMed  Google Scholar 

  • Keller KE, Doctor ZM, Dwyer ZW, Lee Y-S (2014) SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 53(5):700–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542

    Article  CAS  PubMed  Google Scholar 

  • Li L, Song D, Qi L, Jiang M, Wu Y, Gan J, Cao K, Li Y, Bai Y, Zheng T (2021) Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis. Cancer Lett 520:143–159

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yin M, Dong J, Mao G, Min W, Kuang Z, Yang P, Liu L, Zhang N, Deng H (2021) Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR. Acta Pharm Sin B 11(10):3134–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loveless R, Bloomquist R, Teng Y (2021) Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res 40(1):264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Luo S, Cheng Z, Yang X, Lv D, Li X, Guo Y, Li C, Yan J (2020) Tubeimoside I improves survival of mice in sepsis by inhibiting inducible nitric oxide synthase expression. Biomed Pharmacother 126:110083

    Article  CAS  PubMed  Google Scholar 

  • Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35 Suppl(0):S78-S103

  • Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (albany NY) 8(4):603–619

    Article  CAS  PubMed  Google Scholar 

  • Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L (2016) Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 27(8):1482–1492

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues T, Reker D, Schneider P, Schneider G (2016) Counting on natural products for drug design. Nat Chem 8(6):531–541

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8(1):14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A (2023) Colorectal cancer statistics, 2023. CA Cancer J Clin 73:233–254

    Article  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Wang CL, Gao MZ, Gao DM, Guo YH, Gao Z, Gao XJ, Wang JQ, Qiao MQ (2022) Tubeimoside-1: a review of its antitumor effects, pharmacokinetics, toxicity, and targeting preparations. Front Pharmacol 13:941270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19(9):971–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S (2022) Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin 43(10):2462–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Xie J, Lei X, Song Z, Gong Y, Liu H, Zhou L (2020) Tubeimoside I suppresses diabetes-induced bone loss in rats, osteoclast formation, and RANKL-induced nuclear factor-kappaB pathway. Int Immunopharmacol 80:106202

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, Chen X, Hou D, Wang Y, Pan Q, Xu J, Zhang X, Liu J, Pei S, Peng C, Wu P, Romano S, Mao C, Huang M, Zhu X, Shen K, Qin J, Xiao Y (2019) Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun 10(1):4353

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu TX, Ma RD, Yu LJ (2001) Structure-activity relationship of tubeimosides in anti-inflammatory, antitumor, and antitumor-promoting effects. Acta Pharmacol Sin 22(5):463–468

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang Z (2020) The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 17(8):807–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F (2019) PKM2, function and expression and regulation. Cell Biosci 9:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, Sengupta S, Yao Y, Wu H, Lieberman J (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579(7799):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W, He J (2022) Cancer incidence and mortality in China, 2016. Journal of the National Cancer Center 2(1):1–9

    Article  Google Scholar 

  • Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368(6494):eaaz7548

  • Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, Peng C (2021) Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett 503:240–248

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358(6382):167–169

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (no. 81971858), the Inner Mongolia Natural Science Foundation (no. 2022MS08029), the National Natural Science Foundation of Tianjin (no. 18JCQNJC13400; no.19JCZDJC36200), and the science foundation of Tianjin Municipal Health Bureau (no. 2021009; no. 2021044; no. 2021097).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made important contributions to this work and agreed to the final version. Lei Yang and Ximo Wang designed the study. Dongsheng Hu and Lingzhi Cui wrote the original draft and conducted animal experiments. Sijia Zhang, Yuzhen Zhuo and Siqi He conducted cell experiments and data analysis. In addition, Dihua Li, Lanqiu Zhang and Yanli Wang carried out molecular docking, project management and supervision. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Lei Yang or Ximo Wang.

Ethics declarations

Ethical approval

The animal study was reviewed and approved by the Animal Ethics and Welfare Committee of Tianjin Nankai Hospital (No. NKYY-DWLL-2021-097).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2339 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Cui, L., Zhang, S. et al. Antitumor effect of tubeimoside-I on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation. Naunyn-Schmiedeberg's Arch Pharmacol (2023). https://doi.org/10.1007/s00210-023-02855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-023-02855-1

Keywords

Navigation