Skip to main content

Advertisement

Log in

CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Szatanek R, Baj-Krzyworzeka M. CD44 and Tumor-Derived Extracellular Vesicles (TEVs). Possible Gateway to Cancer Metastasis. International Journal of Molecular Sciences. 22(3), 1463 (2021))

Fig. 2

Adapted from Wang, M., Chen, M., Wu, X. et al. CRISPR applications in cancer diagnosis and treatment. Cell Mol Biol Lett 28, 73 (2023))

Fig. 3

Adapted from Sharma, U., Murmu, M., Barwal, T.S. et al. A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr. Oncol. 29, 2326-2349 (2022))

Fig. 4

Adapted from Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. International Journal of Molecular Sciences. 24(19), 14481(2023))

Fig. 5

Adapted from Sharma, U., Murmu, M., Barwal, T.S. et al. A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr. Oncol. 29, 2326-2349 (2022))

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abdel-Fatah TMA, Ali R, Sadiq M, Moseley PM, Mesquita KA, Ball G et al (2019) ERCC1 is a predictor of anthracycline resistance and taxane sensitivity in early stage or locally advanced breast cancers. Cancers 11(8):1149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari AS, Agarwal N, Iwakuma T (2011) Metastatic potential of tumor-initiating cells in solid tumors. Front Biosci 16(5):1927–38

    CAS  Google Scholar 

  • Afify AM, Craig S, Paulino AFG, Stern R (2005) Expression of hyaluronic acid and its receptors, CD44s and CD44v6, in normal, hyperplastic, and neoplastic endometrium. Annals Diagnost Pathol 9(6):312–8

    Google Scholar 

  • Ahmad MZ, Rizwanullah M, Ahmad J, Alasmary MY, Akhter MH, Abdel-Wahab BA et al (2022) Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int J Polym Mater Polym Biomater 71(8):602–23

    CAS  Google Scholar 

  • Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M et al (2022) CRISPR/Cas9: a revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 21:153303382211320

    Google Scholar 

  • Anand V, Khandelwal M, Appunni S, Gupta N, Seth A, Singh P et al (2019) CD44 splice variant (CD44v3) promotes progression of urothelial carcinoma of bladder through Akt/ERK/STAT3 pathways: novel therapeutic approach. J Cancer Res Clin Oncol 145(11):2649–61

    PubMed  Google Scholar 

  • Anurag M, Punturi N, Hoog J, Bainbridge MN, Ellis MJ, Haricharan S (2018) Comprehensive profiling of DNA repair defects in breast cancer identifies a novel class of endocrine therapy resistance drivers. Clin Cancer Res 24(19):4887–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asman DC, Dirks JF, Ge L, Resnick NM, Salvucci LA, Gau JT et al (1995) Gene therapeutic approach to primary and metastatic brain tumors: I CD44 variant pre-RNA alternative splicing as a CEPT control element. J Neuro-Oncol 26(3):243–50

    CAS  Google Scholar 

  • Baiomy MAEL, El Kashef WF (2017) ERCC1 expression in metastatic triple negative breast cancer patients treated with platinum-based chemotherapy. Asian Pac J Cancer Prev 18(2):507–13

    PubMed  PubMed Central  Google Scholar 

  • Barkeer S, Chugh S, Karmakar S, Kaushik G, Rauth S, Rachagani S et al (2018) Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer 18(1):1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barkeer S, Chugh S, Batra SK, Ponnusamy MP (2018) Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia 20(8):813–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu A, Upadhyay P, Ghosh A, Bose A, Gupta P, Chattopadhyay S et al (2021) Hyaluronic acid engrafted metformin loaded graphene oxide nanoparticle as CD44 targeted anti-cancer therapy for triple negative breast cancer. Biochimica et Biophysica Acta - General Subjects 1865(3):129841

    CAS  PubMed  Google Scholar 

  • Bharthuar A, Rehman SSU, Black JD, Levea C, Malhotra U, Mashtare TL et al (2014) Breast cancer resistance protein (BCRP) and excision repair cross complement-1 (ERCC1) expression in esophageal cancers and response to cisplatin and irinotecan based chemotherapy. J Gastroenterol Oncol 5(4):253–8

    Google Scholar 

  • Bhunchu S, Rojsitthisak P (2014) Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie 69(8):563–70

    CAS  PubMed  Google Scholar 

  • Blank-Landeshammer B, Richard VR, Mitsa G, Marques M, Leblanc A, Kollipara L et al (2019) Proteogenomics of colorectal cancer liver metastases: complementing precision oncology with phenotypic data. Cancers 11(12):1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohanes P, LaBonte MJ, Lenz H-J (2011) A review of excision repair cross-complementation group 1 in colorectal cancer. Clin Colorect Cancer 10(3):157–64

    CAS  Google Scholar 

  • Botchkina G (2013) Colon cancer stem cells - from basic to clinical application. Cancer Letters 338(1):127–40

    CAS  PubMed  Google Scholar 

  • Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS Jr, Crawford H, Dufour A et al (2009) Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genom Proteomics 6(1):19–30

    CAS  Google Scholar 

  • Bourguignon LYW (2016) Matrix hyaluronan promotes specific microRNA upregulation leading to drug resistance and tumor progression. Int J Mol Sci 17(4):517

    PubMed  PubMed Central  Google Scholar 

  • Bourguignon LYW, Earle C, Shiina M (2017) Activation of matrix hyaluronan-mediated CD44 signaling, epigenetic regulation and chemoresistance in head and neck cancer stem cells. Int J Mol Sci 18(9):1849

    PubMed  PubMed Central  Google Scholar 

  • Brown WS, Akhand SS, Wendt MK (2016) FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition. Oncotarget 7(50):83424–36

    PubMed  PubMed Central  Google Scholar 

  • Cai MH, Xu XG, Yan SL, Sun Z, Ying Y, Wang BK et al (2018) Regorafenib suppresses colon tumorigenesis and the generation of drug resistant cancer stem-like cells via modulation of miR-34a associated signaling. J Exp Clinic Cancer Res 37(1):151

    Google Scholar 

  • Cai X, Dou R, Guo C, Tang J, Li X, Chen J et al (2023) Cationic polymers as transfection reagents for nucleic acid delivery. Pharmaceutics 15(5):1502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cain JW, Hauptschein RS, Stewart JK, Bagci T, Sahagian GG, Jay DG (2011) Identification of CD44 as a surface biomarker for drug resistance by surface proteome signature technology. Mol Cancer Res 9(5):637–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YT, Lu Y, Wu J, Zhang C, Tan HY, Bian ZX et al (2022) CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics 12(8):3329–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra J, Molugulu N, Annadurai S, Wahab S, Karwasra R, Singh S et al (2023) Hyaluronic acid-functionalized lipoplexes and polyplexes as emerging nanocarriers for receptor-targeted cancer therapy. Environ Res 233:116506

    CAS  PubMed  Google Scholar 

  • Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA et al (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3):135–64

    PubMed  PubMed Central  Google Scholar 

  • Chen D (2015) Tumor formation and drug resistance properties of human glioblastoma side population cells. Mol Med Rep 11(6):4309–14

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhang Y (2018) Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci 5(6):1700964

    Google Scholar 

  • Chen C, Köberle B, Kaufmann AM, Albers AE (2010) A quest for initiating cells of head and neck cancer and their treatment. Cancers 2(3):1528–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Huang H, Wu J, Lu R, Wu Y, Jiang X et al (2015) Bone marrow stromal cells protect acute myeloid leukemia cells from anti-CD44 therapy partly through regulating PI3K/Akt-p27Kip1 axis. Mol Carcinog 54(12):1678–85

    CAS  PubMed  Google Scholar 

  • Chen G, Yan L, Zuo Y, Xie J, Liu Q, Liao S (2018) Association of BRCA1, PRP13, TUBB3 and ERCC1 gene expression with drug resistance in human ovarian cancer. J Pract Oncol 33(5):432–5

    CAS  Google Scholar 

  • Chen C, Ma Y, Du S, Wu Y, Shen P, Yan T et al (2021) Controlled CRISPR-Cas9 ribonucleoprotein delivery for sensitized photothermal therapy. Small 17(33):e2101155

    PubMed  Google Scholar 

  • Chen Q, Gu M, Cai ZK, Zhao H, Sun SC, Liu C et al (2021) TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci 78(3):949–62

    CAS  PubMed  Google Scholar 

  • Chen L, Luo J, Zhang J, Wang S, Sun Y, Liu Q et al (2023) Dual targeted nanoparticles for the codelivery of doxorubicin and siRNA Cocktails to overcome ovarian cancer stem cells. Int J Mol Sci 24(14):11575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciniero G, Elmenoufy AH, Gentile F, Weinfeld M, Deriu MA, West FG et al (2021) Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1–XPF-mediated DNA repair. Cancer Chemother Pharmacol 87:259–67

    CAS  PubMed  Google Scholar 

  • Conic I, Dimov I, Tasic-Dimov D, Djordjevic B, Stefanovic V (2011) Ovarian epithelial cancer stem cells. Sci World J 11:1243–69

    CAS  Google Scholar 

  • Cruz-Gordillo P, Honeywell ME, Harper NW, Leete T, Lee MJ (2020) ELP-dependent expression of MCL1 promotes resistance to EGFR inhibition in triple-negative breast cancer cells. Sci Signal 13(658):eabb9820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deepak Singh D, Han I, Choi EH, Yadav DK (2021) CRISPR/Cas9 based genome editing for targeted transcriptional control in triple-negative breast cancer. Comput Struct Biotechnol J 19:2384–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinari A, Moghadam TT, Abdollahi M, Sadeghizadeh M (2018) Synthesis and characterization of a nano-polyplex system of GNRs-PDMAEA-pDNA: an inert self-catalyzed degradable carrier for facile gene delivery. Sci Rep 8(1):8112

    PubMed  PubMed Central  Google Scholar 

  • Ding K, Jiang X, Ni J, Zhang C, Li A, Zhou J (2023) JWA inhibits nicotine-induced lung cancer stemness and progression through CHRNA5/AKT-mediated JWA/SP1/CD44 axis. Ecotoxicol Environ Safety 259:115043

    CAS  PubMed  Google Scholar 

  • Du Y, Ning Y, Wen Y, Liu L, Liang X, Li P et al (2018) A genome-wide pathway enrichment analysis identifies brain region related biological pathways associated with intelligence. Psychiatry Res 268:238–42

    PubMed  Google Scholar 

  • Du W, Sun L, Liu T, Zhu J, Zeng Y, Zhang Y et al (2020) The miR-625-3p/AXL axis induces non-T790M acquired resistance to EGFR-TKI via activation of the TGF-β/Smad pathway and EMT in EGFR-mutant non-small cell lung cancer. Oncol Rep 44(1):185–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Yang X, He S, Wang J, Guo Y, Kou B et al (2021) Novel hyaluronic acid oligosaccharide-loaded and CD44v6-targeting oxaliplatin nanoparticles for the treatment of colorectal cancer. Drug Deliv 28(1):920–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzobo K, Sinkala M (2021) Cancer stem cell marker CD44 plays multiple key roles in human cancers: immune suppression/evasion, drug resistance, epithelial-mesenchymal transition, and metastasis. OMICS A J Integr Biol 25(5):313–32

    CAS  Google Scholar 

  • Ekblad L, Johnsson A (2012) Cetuximab sensitivity associated with oxaliplatin resistance in colorectal cancer. Anticancer Res 32(3):783–6

    CAS  PubMed  Google Scholar 

  • Escalante PI, Quinones LA, Contreras HR (2021) Epithelial-mesenchymal transition and microRNAs in colorectal cancer chemoresistance to FOLFOX. Pharmaceutics 13(1):75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito R, Bosch N, Lanzós A, Polidori T, Pulido-Quetglas C, Johnson R (2019) Hacking the cancer genome: profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening. Cancer Cell 35(4):545–57

    CAS  PubMed  Google Scholar 

  • Fang H, Zhao X, Gu X, Sun H, Cheng R, Zhong Z et al (2020) CD44-targeted multifunctional nanomedicines based on a single-component hyaluronic acid conjugate with all-natural precursors: construction and treatment of metastatic breast tumors in vivo. Biomacromolecules 21(1):104–13

    CAS  PubMed  Google Scholar 

  • Fang T, Cao X, Ibnat M, Chen G (2022) Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnol 20(1):354

    CAS  Google Scholar 

  • Farrell L-L, Pepin J, Kucharski C, Lin X, Xu Z, Uludag H (2007) A comparison of the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). Eur J Pharm Biopharm 65(3):388–97

    CAS  PubMed  Google Scholar 

  • Feng J, Lu H, Ma W, Tian W, Lu Z, Yang H et al (2022) Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer. Protein Cell 13(11):825–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Zhao D, Lv F, Yuan Z (2022) Epigenetic inheritance from normal origin cells can determine the aggressive biology of tumor-initiating cells and tumor heterogeneity. Cancer Contr 29:107327482210781

    Google Scholar 

  • Francescangeli F, Contavalli P, De Angelis ML, Careccia S, Signore M, Haas TL et al (2020) A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. J Exp Clin Cancer Res 39(1):2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gammelgaard KR, Vad-Nielsen J, Clement MS, Weiss S, Daugaard TF, Dagnæs-Hansen F et al (2019) Up-regulated FGFR1 expression as a mediator of intrinsic TKI resistance in EGFR-mutated NSCLC. Trans Oncol 12(3):432–40

    Google Scholar 

  • Gao Y, Feng Y, Shen JK, Lin M, Choy E, Cote GM et al (2015) CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma. Sci Rep 5(1):11365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg U, Chauhan S, Nagaich U, Jain N (2019) Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 9(2):195–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzano E, Buondonno I, Marengo A, Rolando B, Chegaev K, Kopecka J et al (2019) Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett 456:29–39

    CAS  PubMed  Google Scholar 

  • Gerardo-Ramírez M, Keggenhoff FL, Giam V, Becker D, Groth M, Hartmann N et al (2022) CD44 contributes to the regulation of MDR1 protein and doxorubicin chemoresistance in osteosarcoma. Int J Mol Sci 23(15):8616

    PubMed  PubMed Central  Google Scholar 

  • Gerardo-Ramírez M, Keggenhoff FL, Giam V, Becker D, Groth M, Hartmann N et al (2022) CD44 contributes to the regulation of MDR1 Protein and doxorubicin chemoresistance in osteosarcoma. Int J Mol Sci 23(15):8616

    PubMed  PubMed Central  Google Scholar 

  • Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M et al (2017) Transforming growth factor 1 (TGF1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 292(25):10490–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatak S, Hascall VC, Markwald RR, Misra S (2021) Folfox therapy induces feedback upregulation of cd44v6 through yb-1 to maintain stemness in colon initiating cells. Int J Mol Sci 22(2):753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatak S, Hascall VC, Markwald RR, Misra S (2021) Folfox therapy induces feedback upregulation of cd44v6 through yb-1 to maintain stemness in colon initiating cells. Int J Mol Sci 22(2):1–37

    Google Scholar 

  • Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S (2022) Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol 12:906260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S (2022) Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol 12:906260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H (2015) Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol 57(3):201–18

    CAS  PubMed  Google Scholar 

  • Ghosal K, Agatemor C, Han RI, Ku AT, Thomas S, Mukherjee S (2020) Fanconi anemia DNA repair pathway as a new mechanism to exploit cancer drug resistance. Mini-Rev Med Chem 20(9):779–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh SC, Neslihan Alpay S, Klostergaard J (2012) CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 16(7):635–50

    CAS  PubMed  Google Scholar 

  • Ghuwalewala S, Ghatak D, Das P, Dey S, Sarkar S, Alam N et al (2016) CD44 high CD24 low molecular signature determines the cancer stem cell and EMT phenotype in oral squamous cell carcinoma. Stem Cell Res 16(2):405–17

    CAS  PubMed  Google Scholar 

  • Glass Z, Lee M, Li Y, Xu Q (2018) Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 36(2):173–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Ke H, Zhang H, Zou L, Yang Q, Lu X et al (2022) TDP43 promotes stemness of breast cancer stem cells through CD44 variant splicing isoforms. Cell Death Dis 13(5):428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Bhinge KN, Hosain SB, Xiong K, Gu X, Shi R et al (2012) Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem 287(44):37195–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Leon F, Thompson CM, Nimmakayala R, Karmakar S, Nallasamy P et al (2020) Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. Br J Cancer 122(11):1661–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadipour K, Asadishad T, Mahya L, Mohammadhassan R, Rahbar A, Goudarziasl F (2023) A comparative review on genome editing approaches. Biointerface Res Appl Chem 13(6):567

    CAS  Google Scholar 

  • Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM (2017) Polyplex evolution: understanding biology, optimizing performance. Mol Ther 25(7):1476–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond WA, Swaika A, Mody K (2016) Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 8(1):57–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MA, Dostálová A, Ceroni C, Poidevin M, Kondo S, Lemaitre B (2019) Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife. 8:e44341

    PubMed  PubMed Central  Google Scholar 

  • Hara T, Makino T, Yamasaki M, Tanaka K, Miyazaki Y, Takahashi T et al (2019) Effect of c-Met and CD44v6 expression in resistance to chemotherapy in esophageal squamous cell carcinoma. Annals Surg Oncol 26(3):899–906

    Google Scholar 

  • He Z, Gong F, Liao J, Wang Q, Su Y, Chen C et al (2020) Spred-3 mutation and Ras/Raf/MAPK activation confer acquired resistance to EGFR tyrosine kinase inhibitor in an EGFR mutated NSCLC cell line. Trans Cancer Res 9(4):2542–55

    CAS  Google Scholar 

  • Hertweck MK, Erdfelder F, Kreuzer KA (2011) CD44 in hematological neoplasias. Annals Hematol 90(5):493–508

    CAS  Google Scholar 

  • Hirano M, Imai Y, Kaito Y, Murayama T, Sato K, Ishida T et al (2021) Small-molecule HDAC and Akt inhibitors suppress tumor growth and enhance immunotherapy in multiple myeloma. J Exper Clin Cancer Res 40(1):110

    CAS  Google Scholar 

  • Hiro J, Inoue Y, Toiyama Y, Miki C, Kusunoki M (2008) Mechanism of resistance to chemoradiation in p53 mutant human colon cancer. Int J Oncol 32(6):1305–10

    CAS  PubMed  Google Scholar 

  • Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R et al (2023) Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 72(2):226–41

    CAS  PubMed  Google Scholar 

  • Hoegen B, Hampstead JE, Engelke UFH, Kulkarni P, Wevers RA, Brunner HG et al (2022) Application of metabolite set enrichment analysis on untargeted metabolomics data prioritises relevant pathways and detects novel biomarkers for inherited metabolic disorders. J Inherit Metab Dis 45(4):682–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosea R, Hardiany NS, Ohneda O, Wanandi SI (2018) Glucosamine decreases the stemness of human ALDH+ breast cancer stem cells by inactivating STAT3. Oncol Lett 16(4):4737–44

    PubMed  PubMed Central  Google Scholar 

  • Hosono K, Nishida Y, Knudson W, Knudson CB, Naruse T, Suzuki Y et al (2007) Hyaluronan oligosaccharides inhibit tumorigenicity of osteosarcoma cell lines MG-63 and LM-8 in vitro and in vivo via perturbation of hyaluronan-rich pericellular matrix of the cells. Am J Pathol 171(1):274–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu DS-S, Lan H-Y, Huang C-H, Tai S-K, Chang S-Y, Tsai T-L et al (2010) Regulation of excision repair cross-complementation group 1 by snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res 16(18):4561–71

    CAS  PubMed  Google Scholar 

  • Hu T, Li Z, Gao CY, Cho CH (2016) Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 22(30):6876–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Li G, Zhang P, Zhuang X, Hu G (2017) A CD44v+ subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death Dis 8(3):e2679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Wen F, Gu P, Liu J, Xia Y, Li Y et al (2022) The inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du decoction on the drug resistance of gastric cancer stem cells based on ABC transporters. Chinese Medicine (United Kingdom). 17(1):93

    CAS  Google Scholar 

  • Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L et al (2020) SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Comm 11(1):2170

    Google Scholar 

  • Hussmann D, Madsen AT, Jakobsen KR, Luo Y, Sorensen BS, Nielsen AL (2017) IGF1R depletion facilitates MET-amplification as mechanism of acquired resistance to erlotinib in HCC827 NSCLC cells. Oncotarget 8(20):33300–15

    PubMed  PubMed Central  Google Scholar 

  • Jamialahmadi K, Zahedipour F, Karimi G (2021) The role of microRNAs on doxorubicin drug resistance in breast cancer. J Pharm Pharmacol 73(8):997–1006

    PubMed  Google Scholar 

  • Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H et al (2023) The therapeutic potential of immunotherapy in the treatment of breast cancer: rational strategies and recent progress. J Cell Biochem 124(4):477–94

    CAS  PubMed  Google Scholar 

  • Javid H, Sharbaf Mashhad A, Yazdani S, Akbari Oryani M, Akbari S, Rezagholinejad N et al (2023) The role of viruses in cancer development versus cancer therapy: an oncological perspective. Cancer Med 10:11127–11148

    Google Scholar 

  • Jiang C, Lin X, Zhao Z (2019) Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol Med 25(11):1039–49

    CAS  PubMed  Google Scholar 

  • Joosten SPJ, Spaargaren M, Clevers H, Pals ST (2020) Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance. Biochimica et Biophys Acta - Rev Cancer 1874(2):188437

    CAS  Google Scholar 

  • Jordheim LP, Chettab K, Cros-Perrial E, Matera E-L, Dumontet C (2018) Unexpected growth-promoting effect of oxaliplatin in excision repair cross-complementation group 1 transfected human colon cancer cells. Pharmacology 102(3–4):161–8

    CAS  PubMed  Google Scholar 

  • Kang DW, Lee SW, Hwang WC, Lee BH, Choi YS, Suh YA et al (2017) Phospholipase D1 acts through Akt/TopBP1 and RB1 to regulate the E2F1-dependent apoptotic program in cancer cells. Cancer Res 77(1):142–52

    CAS  PubMed  Google Scholar 

  • Karmakar S, Rauth S, Nallasamy P, Perumal N, Nimmakayala RK, Leon F et al (2020) RNA polymerase II-associated factor 1 regulates stem cell features of pancreatic cancer cells, independently of the PAF1 complex, via interactions with PHF5A and DDX3. Gastroenterology 159(5):1898–915.e6

    CAS  PubMed  Google Scholar 

  • Karn V, Sandhya S, Hsu W, Parashar D, Singh HN, Jha NK et al (2022) CRISPR/Cas9 system in breast cancer therapy: advancement, limitations and future scope. Cancer Cell Int 22(1):234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karp PD, Midford PE, Caspi R, Khodursky A (2021) Pathway size matters: the influence of pathway granularity on over-representation (enrichment analysis) statistics. BMC Genomics 22(1):191

    PubMed  PubMed Central  Google Scholar 

  • Kashyap T, Pramanik KK, Nath N, Mishra P, Singh AK, Nagini S et al (2018) Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol 86:234–43

    CAS  PubMed  Google Scholar 

  • Kerek EM, Cromwell CR, Hubbard BP (2021) Identification of drug resistance genes using a pooled lentiviral CRISPR/Cas9 screening approach. Methods Mol Biol 2381:227–42

    PubMed  Google Scholar 

  • Kim HS, Park YB, Oh JH, Jeong J, Kim CJ, Lee SH (2002) Expression of CD44 isoforms correlates with the metastatic potential of osteosarcoma. Clin Orthop Relat Res 396:184–90

    Google Scholar 

  • Köbel M, Weichert W, Crüwell K, Schmitt WD, Lautenschläger C, Hauptmann S (2004) Epithelial hyaluronic acid and CD44v6 are mutually involved in invasion of colorectal adenocarcinomas and linked to patient prognosis. Virchows Archiv 445(5):456–64

    PubMed  Google Scholar 

  • Kong L, Ji H, Gan X, Cao S, Li Z, Jin Y (2022) Knockdown of CD44 inhibits proliferation, migration and invasion of osteosarcoma cells accompanied by downregulation of cathepsin S. J Orthopaedic Surg Res 17(1):154

    Google Scholar 

  • Kotlarz A, Przybyszewska M, Swoboda P, Neska J, Miłoszewska J, Grygorowicz MA et al (2019) Imatinib inhibits the regrowth of human colon cancer cells after treatment with 5-FU and cooperates with vitamin D analogue PRI-2191 in the downregulation of expression of stemness-related genes in 5-FU refractory cells. J Steroid Biochem Mol Biol 189:48–62

    CAS  PubMed  Google Scholar 

  • Kuo YC, Kou HW, Hsu CP, Lo CH, Hwang TL (2023) Identification and clinical significance of pancreatic cancer stem cells and their chemotherapeutic drug resistance. Int J MolSci 24(8):7331

    CAS  Google Scholar 

  • Kurczewska J (2023) Chitosan-Based nanoparticles with optimized parameters for targeted delivery of a specific anticancer drug—a comprehensive review. Pharmaceutics 15(2):503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon MJ, Shin YK (2013) Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci 14(4):6624–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T, Son HY, Choi Y, Shin Y, Oh S, Kim J et al (2017) Minimum hyaluronic acid (HA) modified magnetic nanocrystals with less facilitated cancer migration and drug resistance for targeting CD44 abundant cancer cells by MR imaging. J Mater Chem B 5(7):1400–7

    CAS  PubMed  Google Scholar 

  • Lee HH, Bellat V, Law B (2017) Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS ONE. 12(2):e0171044

    PubMed  PubMed Central  Google Scholar 

  • Leonessa F, Clarke R (2003) ATP binding cassette transporters and drug resistance in breast cancer. Endocrine-Relat Cancer 10(1):43–73

    CAS  Google Scholar 

  • Li JJ, Ding Y, Li DD, Peng RQ, Feng GK, Zeng YX et al (2009) The overexpression of ERCC-I is involved in the resistance of lung cancer cells to cetuximab combined with DDp. Cancer Biol Ther. 8(20):1914–21

    CAS  PubMed  Google Scholar 

  • Li JM, Jiang GM, Zhao L, Yang F, Yuan WQ, Luo YQ et al (2019) Dehydrogenase/reductase SDR family member 2 silencing sensitizes an oxaliplatin-resistant cell line to oxaliplatin by inhibiting excision repair cross-complementing group 1 protein expression. Oncol Rep 42(5):1725–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li M, Tian L, Qiu Y, Yu Q, Wang X et al (2020) Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm 578:119122

    CAS  PubMed  Google Scholar 

  • Li LY, Guan YD, Chen XS, Yang JM, Cheng Y (2020) DNA repair pathways in cancer therapy and resistance. Front Pharmacol 11:629266

    CAS  PubMed  Google Scholar 

  • Li J, Sun P, Huang T, He S, Li L, Xue G (2020) Individualized chemotherapy guided by the expression of ERCC1, RRM1, TUBB3, TYMS and TOP2A genes versus classic chemotherapy in the treatment of breast cancer: a comparative effectiveness study. Oncol Lett 21(1):21

    PubMed  PubMed Central  Google Scholar 

  • Li L, Wang N, Xiong Y, Guo G, Zhu M, Gu Y (2022) Transcription factor FOSL1 enhances drug resistance of breast cancer through DUSP7-mediated dephosphorylation of PEA15. Mol Cancer Res 20(4):515–26

    CAS  PubMed  Google Scholar 

  • Li L, Liu C, Fu J, Wang Y, Yang D, Peng B et al (2023) CD44 targeted indirubin nanocrystal-loaded hyaluronic acid hydrogel for the treatment of psoriasis. Int J Biol Macromol 243:125239

    CAS  PubMed  Google Scholar 

  • Liao S, Zhou S, Wang C (2018) GAPLINC is a predictor of poor prognosis and regulates cell migration and invasion in osteosarcoma. Biosci Rep 38(5):BSR20181171

    PubMed  PubMed Central  Google Scholar 

  • Lin Y-L, Liau J-Y, Yu S-C, Ou D-L, Lin L-I, Tseng L-H et al (2012) KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells. PloS One 7(11):e50701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Li X, Pan C, Lin W, Shao R, Liu Y et al (2019) ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death Dis 10(3):173

    PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Chen XS, Shen KW (2012) Research progress on relationship between epithelial-mesenchymal transitions and drug resistance in breast cancer. Tumor 32(11):945–8

    CAS  Google Scholar 

  • Liu WT, Jing YY, Yan F, Han ZP, Lai FB, Zeng JX et al (2017) LPS-induced CXCR4-dependent migratory properties and a mesenchymal-like phenotype of colorectal cancer cells. Cell Adh Migr 11(1):13–23

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhou C, Wei S, Yang T, Lan Y, Cao A et al (2018) Paclitaxel delivered by CD44 receptor-targeting and endosomal pH sensitive dual functionalized hyaluronic acid micelles for multidrug resistance reversion. Colloids Surf B: Biointerfaces 170:330–40

    CAS  PubMed  Google Scholar 

  • Liu L, Zhu H, Liao Y, Wu W, Liu L, Liu L et al (2020) Inhibition of Wnt/β-catenin pathway reverses multi-drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomed Pharmacother 127:110225

    CAS  PubMed  Google Scholar 

  • Liu P, Zhou Q, Li J (2022) Integrated multi-omics data analysis reveals associations between glycosylation and stemness in hepatocellular carcinoma. Front Oncol 12:913432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang S, Lin B, Zhang W, Ji G (2021) Applications of CRISPR/Cas9 in the research of malignant musculoskeletal tumors. BMC Musculoskeletal Disord 22(1):149

    Google Scholar 

  • Lokman NA, Price ZK, Hawkins EK, Macpherson AM, Oehler MK, Ricciardelli C (2019) 4-methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer. Cancers 11(8):1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lourenço BN, Springer NL, Ferreira D, Oliveira C, Granja PL, Fischbach C (2018) CD44v6 increases gastric cancer malignant phenotype by modulating adipose stromal cell-mediated ECM remodeling. Integr Biol (United Kingdom). 10(3):145–58

    Google Scholar 

  • Lu Z, Mao W, Yang H, Santiago-O’Farrill JM, Rask PJ, Mondal J et al (2022) SIK2 inhibition enhances PARP inhibitor activity synergistically in ovarian and triple-negative breast cancers. J Clin Invest 132(11):9

    Google Scholar 

  • Lucena-Cacace A, Otero-Albiol D, Jimenez-García MP, Muñoz-Galvan S, Carnero A (2018) NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through sirt1 and PARP. Clinic Cancer Res 24(5):1202–15

    CAS  Google Scholar 

  • Luo HY, Wei W, Shi YX, Chen XQ, Li YH, Wang F et al (2010) Cetuximab enhances the effect of oxaliplatin on hypoxic gastric cancer cell lines. Oncol Rep 23(6):1735–45

    CAS  PubMed  Google Scholar 

  • Lv L, Liu HG, Dong SY, Yang F, Wang QX, Guo GL et al (2016) Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells. Tumor Biol 37(7):8811–24

    CAS  Google Scholar 

  • Ma H, Tian T, Cui Z (2023) Targeting ovarian cancer stem cells: a new way out. Stem Cell Res Ther 14(1):28

    PubMed  PubMed Central  Google Scholar 

  • Maccalli C, Rasul KI, Elawad M, Ferrone S (2018) The role of cancer stem cells in the modulation of anti-tumor immune responses. Sem Cancer Biol 53:189–200

    CAS  Google Scholar 

  • Mahfoudhi E, Ricordel C, Lecuyer G, Mouric C, Lena H, Pedeux R (2022) Preclinical models for acquired resistance to third-generation EGFR inhibitors in NSCLC: functional studies and drug combinations used to overcome resistance. Front Oncol 12:853501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maity S, Pai KSR, Nayak Y (2020) Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol Rep 72(4):799–813

    PubMed  PubMed Central  Google Scholar 

  • Malkomes P, Lunger I, Luetticke A, Oppermann E, Haetscher N, Serve H et al (2016) Selective AKT Inhibition by MK-2206 represses colorectal cancer-initiating stem cells. Annals Surg Oncol 23(9):2849–57

    Google Scholar 

  • Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell biol 15(7):465–81

    CAS  PubMed  Google Scholar 

  • Martins M, Mansinho A, Cruz-Duarte R, Martins SL, Costa L (2018) Anti-EGFR therapy to treat metastatic colorectal cancer: not for all. Adv Exp Med Biol 1110:113–31

    CAS  PubMed  Google Scholar 

  • Mathews LA, Cabarcas SM, Farrar WL (2011) DNA repair: the culprit for tumor-initiating cell survival? Cancer Metastasis Rev 30(2):185–97

    PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Itou J, Sato F, Toi M (2018) SALL4 - KHDRBS3 network enhances stemness by modulating CD44 splicing in basal-like breast cancer. Cancer Med 7(2):454–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattheolabakis G, Milane L, Singh A, Amiji MM (2015) Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target 23(7–8):605–18

    CAS  PubMed  Google Scholar 

  • Mayr L, Pirker C, Lötsch D, Van Schoonhoven S, Windhager R, Englinger B et al (2017) CD44 drives aggressiveness and chemoresistance of a metastatic human osteosarcoma xenograft model. Oncotarget 8(69):114095–108

    PubMed  PubMed Central  Google Scholar 

  • Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M (2023) Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne). 14:1148412

    PubMed  PubMed Central  Google Scholar 

  • Mimeault M, Batra SK (2016) Novel cancer therapies by molecular targeting distinct growth factor pathways and drug resistance-associated molecules in cancer-and metastasis-initiating cells. Role of Cancer Stem Cells in Cancer Biology and Therapy: CRC Press, pp 199–226

  • Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B et al (2018) DNA damage response and repair in colorectal cancer: defects, regulation and therapeutic implications. DNA Repair 69:34–52

    CAS  PubMed  Google Scholar 

  • Motohara T, Yoshida GJ, Katabuchi H (2021) The hallmarks of ovarian cancer stem cells and niches: exploring their harmonious interplay in therapy resistance. Semin Cancer Biol 77:182–93

    CAS  PubMed  Google Scholar 

  • Muys BR, Anastasakis DG, Claypool D, Pongor L, Li XL, Grammatikakis I et al (2021) The p53-induced RNA-binding protein ZMAT3 is a splicing regulator that inhibits the splicing of oncogenic CD44 variants in colorectal carcinoma. Genes Dev 35(1):102–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NM, Cho J (2022) Hedgehog pathway inhibitors as targeted cancer therapy and strategies to overcome drug resistance. Int J Mol Sci 23(3):1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolazzo C, Loreni F, Caponnetto S, Magri V, Vestri AR, Zamarchi R et al (2020) Baseline CD44v6-positive circulating tumor cells to predict first-line treatment failure in patients with metastatic colorectal cancer. Oncotarget 11(45):4115–22

    PubMed  PubMed Central  Google Scholar 

  • Ning J, Jiao Y, Xie X, Deng X, Zhang Y, Yang Y et al (2019) miR-138-5p modulates the expression of excision repair cross-complementing proteins ERCC1 and ERCC4, and regulates the sensitivity of gastric cancer cells to cisplatin. Oncol Rep 41(2):1131–9

    CAS  PubMed  Google Scholar 

  • Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R (2018) Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 233(6):4546–62

    CAS  PubMed  Google Scholar 

  • O’Brien CA, Kreso A, Dick JE (2009) Cancer stem cells in solid tumors: an overview. Semin Rad Oncol 19(2):71–7

    Google Scholar 

  • Orlandi A, Di Salvatore M, Bagalà C, Basso M, Strippoli A, Plastino F et al (2015) ERCC1 induction after oxaliplatin exposure may depend on KRAS mutational status in colorectal cancer cell line: in vitro veritas. J Cancer 6(1):70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang S, Zhou X, Chen Z, Wang M, Zheng X, Xie M (2019) LncRNA BCAR4, targeting to miR-665/STAT3 signaling, maintains cancer stem cells stemness and promotes tumorigenicity in colorectal cancer. Cancer Cell Int 19(1):72

    PubMed  PubMed Central  Google Scholar 

  • Paldino E, Tesori V, Casalbore P, Gasbarrini A, Puglisi MA (2014) Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells? BioMed Res Int 2014(1):7

    Google Scholar 

  • Patil S, Bhatt P, Lalani R, Amrutiya J, Vhora I, Kolte A et al (2016) Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Adv 6(112):110951–63

    CAS  Google Scholar 

  • Polachi N, Subramaniyan B, Nagaraja P, Rangiah K, Ganeshan M (2018) Extract from Butea monosperma inhibits β-catenin/Tcf signaling in SW480 human colon cancer cells. Gene Rep 10:79–89

    Google Scholar 

  • Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA et al (2020) Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer 19(1):37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA et al (2020) Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer 19(1):37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–22

    CAS  PubMed  Google Scholar 

  • Primeaux M, Gowrikumar S, Dhawan P (2022) Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exper Metastasis 39(3):391–406

    CAS  Google Scholar 

  • Prochazka L, Tesarik R, Turanek J (2014) Regulation of alternative splicing of CD44 in cancer. Cell Signal 26(10):2234–9

    CAS  PubMed  Google Scholar 

  • Qin W, Xiong Y, Chen J, Huang Y, Liu T (2018) DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells. J Cell Mol Med 22(7):3364–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindranath AK, Kaur S, Wernyj RP, Kumaran MN, Miletti-Gonzalez KE, Chan R et al (2015) CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination. Oncotarget 6(28):26308–21

    PubMed  PubMed Central  Google Scholar 

  • Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S et al (2018) Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 244(2):227–41

    CAS  PubMed  Google Scholar 

  • Ren F, Shen J, Shi H, Hornicek FJ, Kan Q, Duan Z (2016) Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochimica et Biophys Acta - Rev Cancer 1866(2):266–75

    CAS  Google Scholar 

  • Ren Y, Deng R, Cai R, Lu X, Luo Y, Wang Z et al (2020) TUSC3 induces drug resistance and cellular stemness via Hedgehog signaling pathway in colorectal cancer. Carcinogenesis 41(12):1755–66

    CAS  PubMed  Google Scholar 

  • Rouge TDLM, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al (2007) A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67(13):6253–62

    Google Scholar 

  • Rupp M, Mouhri ZS, Williams C, Jean-Claude BJ (2018) Molecular analysis of the dual targeting of the epidermal growth factor receptor and the O6-methylguanine-DNA methyltransferase with a double arm hybrid molecule. Oncotarget 9(80):35041–55

    PubMed  PubMed Central  Google Scholar 

  • Ryoo IG, Choi BH, Ku SK, Kwak MK (2018) High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox Biol 17:246–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safdar MH, Hussain Z, Abourehab MAS, Hasan H, Afzal S, Thu HE (2018) New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy Artificial Cells. Nanomed Biotechnol 46(8):1967–80

    CAS  Google Scholar 

  • Salari N, Mansouri K, Valipour E, Abam F, Jaymand M, Rasoulpoor S et al (2021) Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: a systematic review. DARU J Pharm Sci 29(2):439–47

    CAS  Google Scholar 

  • Seetharam RN, Sood A, Basu-Mallick A, Augenlicht LH, Mariadason JM, Goel S (2010) Oxaliplatin resistance induced by ERCC1 up-regulation is abrogated by siRNA-mediated gene silencing in human colorectal cancer cells. Antican Res 30(7):2531–8

    CAS  Google Scholar 

  • Shahin SA, Wang R, Simargi SI, Contreras A, Parra Echavarria L, Qu L et al (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomed Nanotechnol Biol Med 14(4):1381–94

    CAS  Google Scholar 

  • Shan L, Han ZG, Liu L, Aerxiding P, Wang XG, Ma L et al (2009) ERCC1 and BRCA1 expressions in advanced non-small cell lung cancer and their relationship with cisplatin resistance. Tumor 29(6):571–4

    CAS  Google Scholar 

  • Shao YY, Kuo KT, Hu FC, Lu YS, Huang CS, Liau JY et al (2010) Predictive and prognostic values of tau and ERCC1 in advanced breast cancer patients treated with paclitaxel and cisplatin. Jap J Clin Oncol 40(4):286–93

    Google Scholar 

  • Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C (2021) CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther 29(2):571–86

    CAS  PubMed  Google Scholar 

  • Shen B, Powell RH, Behnke MS (2017) QTL mapping and CRISPR/Cas9 editing to identify a drug resistance gene in toxoplasma gondii. J Vis Exp 2017(124):55185

    Google Scholar 

  • Shih PC, Chen HP, Hsu CC, Lin CH, Ko CY, Hsueh CW et al (2023) Long-term DEHP/MEHP exposure promotes colorectal cancer stemness associated with glycosylation alterations. Environ Poll 327:121476

    CAS  Google Scholar 

  • Shirani-Bidabadi S, Mirian M, Varshosaz J, Tavazohi N, Sadeghi HMM, Shariati L (2023) Gene network analysis of oxaliplatin-resistant colorectal cancer to target a crucial gene using chitosan/hyaluronic acid/protamine polyplexes containing CRISPR-Cas9. Biochimica et Biophysica Acta - General Subjects 1867(8):130385

    CAS  PubMed  Google Scholar 

  • Shirani-Bidabadi S, Mirian M, Varshosaz J, Tavazohi N, Sadeghi HMM (1867) Shariati L (2023) Gene network analysis of oxaliplatin-resistant colorectal cancer to target a crucial gene using chitosan/hyaluronic acid/protamine polyplexes containing CRISPR-Cas9. Biochim Biophys Acta Gen Subj 8

  • Si W, Shen J, Zheng H, Fan W (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 11(1):1–24

    Google Scholar 

  • Siddiqui JA (2020) Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer 19:37

    PubMed  PubMed Central  Google Scholar 

  • Skandalis SS, Karalis TT, Chatzopoulos A, Karamanos NK (2019) Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 63:109377

    CAS  PubMed  Google Scholar 

  • Song JM, Molla K, Anandharaj A, Cornax I, Gerard O’Sullivan M, Kirtane AR et al (2017) Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling. Oncotarget 8(16):26927–40

    PubMed  PubMed Central  Google Scholar 

  • Sousa V, Bastos B, Silva M, Alarcão AM, Carvalho L (2015) Bronchial-pulmonary adenocarcinoma subtyping relates with different molecular pathways. Revista Portuguesa de Pneumologia. 21(5):259–70

    PubMed  Google Scholar 

  • Sreekumar R, Al-Saihati H, Emaduddin M, Moutasim K, Mellone M, Patel A et al (2021) The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol Oncol 15(8):2065–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strippoli A, Cocomazzi A, Basso M, Cenci T, Ricci R, Pierconti F et al (2020) C-myc expression is a possible keystone in the colorectal cancer resistance to egfr inhibitors. Cancers 12(3):638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su Q, Song J, Zhang X, Jiang Y, Gao H (2022) Identification of AGT and CD44 in methotrexate-resistant colorectal cancer and reversal of methotrexate-resistance. Pathol Res Pract 229:153717

    CAS  PubMed  Google Scholar 

  • Sugasawa K (2019) Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. Enzymes 45:99–138

    CAS  PubMed  Google Scholar 

  • Sun L, Fang Y, Wang X, Han Y, Du F, Li C et al (2019) MiR-302a inhibits metastasis and cetuximab resistance in colorectal cancer by targeting NFIB and CD44. Theranostics 9(26):8409–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suryani AI, Wathoni N, Muchtaridi M, Joni IM (2021) Targeted drug delivery system; nanoparticle based combination of chitosan and alginate for cancer therapy: a review. Int J Appl Pharm 13(Special Issue 4):69–76

    CAS  Google Scholar 

  • Suzuki H, Tanaka T, Goto N, Kaneko MK, Kato Y (2023) Development of a novel anti-CD44 variant 4 monoclonal antibody C44Mab-108 for immunohistochemistry. Curr Issues Mol Biol 45(3):1875–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taghipour-Sabzevar V, Sharifi T, Bagheri-Khoulenjani S, Goodarzi V, Kooshki H, Halabian R et al (2020) Targeted delivery of a short antimicrobial peptide against CD44-overexpressing tumor cells using hyaluronic acid-coated chitosan nanoparticles: an in vitro study. J Nanopart Res 22(5):99

    CAS  Google Scholar 

  • Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P et al (2023) Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 957:175991

    CAS  PubMed  Google Scholar 

  • Tajmir-Riahi HA, Nafisi S, Sanyakamdhorn S, Agudelo D, Chanphai P (2014) Applications of chitosan nanoparticles in drug delivery. Methods Mol Biol 1141:165–84

    CAS  PubMed  Google Scholar 

  • Tajmir-Riahi HA, Nafisi S, Sanyakamdhorn S, Agudelo D, Chanphai P (2014) Applications of chitosan nanoparticles in drug delivery. Methods Mol Biol 1141:165–84

    CAS  PubMed  Google Scholar 

  • Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T et al (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72(6):1438–48

    CAS  PubMed  Google Scholar 

  • Tang J, Gautam P, Gupta A, He L, Timonen S, Akimov Y et al (2019) Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. npj Syst Biol Appl 5(1):20

    PubMed  PubMed Central  Google Scholar 

  • Tao W, Cheng X, Sun D, Guo Y, Wang N, Ruan J et al (2022) Synthesis of multi-branched Au nanocomposites with distinct plasmon resonance in NIR-II window and controlled CRISPR-Cas9 delivery for synergistic gene-photothermal therapy. Biomaterials 287:121621

    CAS  PubMed  Google Scholar 

  • Tavazohi N, Mirian M, Varshosaz J, Shirani-Bidabadi S, Mohammad Sadeghi HM, Khanahmad H (2023) Fabrication and evaluation of a dual-targeting nanoparticle mediated CRISPR/Cas9 delivery to combat drug resistance in breast cancer cells. J Drug Deliv Sci Technol 86:104688

    Google Scholar 

  • Tawara M, Suzuki H, Goto N, Tanaka T, Kaneko MK, Kato Y (2023) A novel anti-CD44 variant 9 monoclonal antibody C44Mab-1 was developed for immunohistochemical analyses against colorectal cancers. Curr Issues Mol Biol 45(4):3658–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terlizzi M, Colarusso C, Pinto A, Sorrentino R (2019) Drug resistance in non-small cell lung cancer (NSCLC): impact of genetic and non-genetic alterations on therapeutic regimen and responsiveness. Pharmacol Ther 202:140–8

    CAS  PubMed  Google Scholar 

  • Thomas TJ, Tajmir-Riahi H-A, Pillai CKS (2019) Biodegradable polymers for gene delivery. Molecules 24(20):3744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thummuri D, Khan S, Underwood PW, Zhang P, Wiegand J, Zhang X et al (2022) Overcoming gemcitabine resistance in pancreatic cancer using the BCL-XL–specific degrader DT2216. Mol Cancer Ther 21(1):184–92

    CAS  PubMed  Google Scholar 

  • Tian B, Hua S, Liu J (2023) Multi-functional chitosan-based nanoparticles for drug delivery: recent advanced insight into cancer therapy. Carbohydr Polym 315:120972

    CAS  PubMed  Google Scholar 

  • Tianyi Y, Hongjiang L, Zengqiang Y, Xingbao L, Zhiheng Z, Yong C (2024) Identification of differences in N6-methyladenosine-related genes in steroid-induced femoral head necrosis. Chinese J Tissue Eng Res 28(14):2159–65

    Google Scholar 

  • Toden S, Kunitoshi S, Cardenas J, Gu J, Hutchins E, Van Keuren-Jensen K et al (2019) Cancer stem cell–associated miRNAs serve as prognostic biomarkers in colorectal cancer. JCI Insight 4(6):e125294

    PubMed  PubMed Central  Google Scholar 

  • Toh TB, Lim JJ, Hooi L, Rashid MBMA, Chow EKH (2020) Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol 72(1):104–18

    CAS  PubMed  Google Scholar 

  • Tomao F, Papa A, Rossi L, Strudel M, Vici P, Lo Russo G et al (2013) Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res 32(1):48

    PubMed  PubMed Central  Google Scholar 

  • Tseng S-J, Kempson IM, Liao Z-X, Ho Y-C, Yang P-C (2022) An acid degradable, lactate oxidizing nanoparticle formulation for non-small cell lung cancer virotherapy. Nano Today 46:101582

    CAS  Google Scholar 

  • Tseng SJ, Kempson IM, Liao ZX, Ho YC, Yang PC (2022) An acid degradable, lactate oxidizing nanoparticle formulation for non-small cell lung cancer virotherapy. Nano Today 46:101582

    CAS  Google Scholar 

  • Ukai S, Sakamoto N, Taniyama D, Harada K, Honma R, Maruyama R et al (2021) KHDRBS3 promotes multi-drug resistance and anchorage-independent growth in colorectal cancer. Cancer Sci 112(3):1196–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vad-Nielsen J, Gammelgaard KR, Daugaard TF, Nielsen AL (2019) Cause-and-effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells. Lung Cancer 132:132–40

    PubMed  Google Scholar 

  • Vallböhmer D, Zhang W, Gordon M, Yang DY, Yun J, Press OA et al (2005) Molecular determinants of cetuximab efficacy. J Clin Oncol 23(15):3536–44

    PubMed  Google Scholar 

  • van den Berg AIS, Yun C-O, Schiffelers RM, Hennink WE (2021) Polymeric delivery systems for nucleic acid therapeutics: approaching the clinic. J Control Release 331:121–41

    PubMed  Google Scholar 

  • van der Noord VE, van der Stel W, Louwerens G, Verhoeven D, Kuiken HJ, Lieftink C et al (2023) Systematic screening identifies ABCG2 as critical factor underlying synergy of kinase inhibitors with transcriptional CDK inhibitors. Breast Cancer Res 25(1):51

    PubMed  PubMed Central  Google Scholar 

  • Very N, Lefebvre T, El Yazidi-Belkoura I (2018) Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 9(1):1380–402

    PubMed  Google Scholar 

  • Wan L, Jiao J, Cui Y, Guo J, Han N, Di D et al (2016) Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology 27(13):135102

    PubMed  Google Scholar 

  • Wang BD, Lee NH (2018) Aberrant RNA splicing in cancer and drug resistance. Cancers 10(11):458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zuo D, Chen Y, Li W, Liu R, He Y et al (2014) Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. Br J Cancer 111(10):1965–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Hou J, Su C, Zhao L, Shi Y (2017) Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnol 15(1):7

    Google Scholar 

  • Wang W, Zhang L, Liu L, Zheng Y, Zhang Y, Yang S et al (2017) Chemosensitizing effect of shRNA-mediated ERCC1 silencing on a Xuanwei lung adenocarcinoma cell line and its clinical significance. Oncol Rep 37(4):1989–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Dong HX, Zeng J, Pan J, Jin XY (2018) LncRNA DGCR5 contributes to CSC-like properties via modulating miR-330-5p/CD44 in NSCLC. J Cell Physiol 233(9):7447–56

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang Z, Li R, Mao F, Sun W, Chen J et al (2018) ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. Biomed Pharmacother 97:1066–77

    CAS  PubMed  Google Scholar 

  • Wang X, Wang R, Bai S, Xiong S, Li Y, Liu M et al (2019) Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway. J Exp Clinic Cancer Res 38(1):505

    CAS  Google Scholar 

  • Wang Z, Yang C, Zhang H, Gao Y, Xiao M, Wang Z et al (2022) In situ transformable supramolecular nanomedicine targeted activating hippo pathway for triple-negative breast cancer growth and metastasis inhibition. ACS Nano 16(9):14644–57

    CAS  PubMed  Google Scholar 

  • Wang S-W, Gao C, Zheng Y-M, Yi L, Lu J-C, Huang X-Y et al (2022) Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 21(1):1–27

  • Wu SY, Huang YJ, Tzeng YM, Huang CYF, Hsiao M, Wu ATH et al (2018) Destruxin B suppresses drug-resistant colon tumorigenesis and stemness is associated with the upregulation of miR-214 and downregulation of mTOR/β-catenin pathway. Cancers 10(10):353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xavier CPR, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J et al (2022) The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 62:100833

    CAS  PubMed  Google Scholar 

  • Xianzhong B, Baoxian B, Wei X, Chi Z, Yisheng Z, Yuanming Z et al (2024) Analysis of serum differential proteomics in patients with acute cervical spondylotic radiculopathy. Chinese J Tissue Eng Res 28(4):535–41

    Google Scholar 

  • Xiao Z, Wan J, Nur AA, Dou P, Mankin H, Liu T et al (2018) Targeting CD44 by CRISPR-Cas9 in multi-drug resistant osteosarcoma cells. Cell Physiol Biochem 51(4):1879–93

    CAS  PubMed  Google Scholar 

  • Xiong B, Ma L, Hu X, Zhang C, Cheng Y (2014) Characterization of side population cells isolated from the colon cancer cell line SW480. Int J Oncol 45(3):1175–83

    CAS  PubMed  Google Scholar 

  • Xu H, Tian Y, Yuan X, Wu H, Liu Q, Pestell RG et al (2015) The role of CD44 in epithelial–mesenchymal transition and cancer development. Onco Targets Ther 8:3783–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu M, Peng K, Yu Y, Liu T (2023) Asparaginyl endopeptidase contributes to cetuximab resistance via MEK/ERK signaling in RAS wide-type metastatic colorectal cancer. Clin TransOncol 25(3):776–85

    CAS  Google Scholar 

  • Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida GJ et al (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3(1):883

    PubMed  Google Scholar 

  • Yang M, Yan M, Zhang R, Li J, Luo Z (2011) Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci 102(10):1774–81

    CAS  PubMed  Google Scholar 

  • Yang Y, Qiu JG, Li Y, Di JM, Zhang WJ, Jiang QW et al (2016) Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am J Trans Res 8(9):3986–94

    CAS  Google Scholar 

  • Yao HJ, Sun L, Liu Y, Jiang S, Pu Y, Li J et al (2016) Monodistearoylphosphatidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells. Carbon 96:362–76

    CAS  Google Scholar 

  • Yao Y, Zhang Y, Shi M, Sun Y, Chen C, Niu M et al (2018) Blockade of deubiquitinase USP7 overcomes bortezomib resistance by suppressing NF-κB signaling pathway in multiple myeloma. J Leukocyte Biol 104(6):1105–15

    CAS  PubMed  Google Scholar 

  • Yin J, Zhang H, Wu X, Zhang Y, Li J, Shen J et al (2020) CD44 inhibition attenuates EGFR signaling and enhances cisplatin sensitivity in human EGFR wild-type non-small-cell lung cancer cells. Int J Mol Med 45(6):1783–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youn C-K, Kim M-H, Cho H-J, Kim H-B, Chang I-Y, Chung M-H et al (2004) Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res 64(14):4849–57

    CAS  PubMed  Google Scholar 

  • Yu DD, Lv MM, Chen WX, Zhong SL, Zhang XH, Chen L et al (2015) Role of miR-155 in drug resistance of breast cancer. Tumor Biol 36(3):1395–401

    CAS  Google Scholar 

  • Yuan Y, Liu J, Yu X, Liu X, Cheng Y, Zhou C et al (2021) Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA. Acta Biomaterialia 135:556–66

    CAS  PubMed  Google Scholar 

  • Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M (2022) Cancer stem cells contribute to drug resistance in multiple different ways. Adv Exper Med Biol 1393:125–39

    CAS  Google Scholar 

  • Zeng J, Liang L, Chen R, Li C, Pan L, Wen M et al (2023) Fraxin represses NF-κB pathway via inhibiting the activation of epidermal growth factor receptor to ameliorate diabetic renal tubulointerstitial fibrosis. Eur J Pharmacol 955:175915

    CAS  PubMed  Google Scholar 

  • Zhang X, Yang H (2020) Research progress on long non-coding RNAs and drug resistance of breast cancer. Clin Breast Cancer 20(4):275–82

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yang H, Qiu Y, Deng Q, Liu J, Zhao M et al (2014) Association between epidermal growth factor receptor gene copy number and ERCC1, BRCA1 protein expression in Chinese patients with non-small cell lung cancer. Med Oncol 31(3):803

    PubMed  Google Scholar 

  • Zhang Y, Tao L, Fan LX, Huang K, Luo HM, Ge H et al (2019) Cx32 mediates cisplatin resistance in human ovarian cancer cells by affecting drug efflux transporter expression and activating the EGFR-Akt pathway. Mol Med Rep 19(3):2287–96

    CAS  PubMed  Google Scholar 

  • Zhang PF, Wu J, Wu Y, Huang W, Liu M, Dong ZR et al (2019) The lncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342-3p target sequence. J Cell Physiol 234(7):10157–65

    CAS  PubMed  Google Scholar 

  • Zhang W, Xu W, Lan Y, He X, Liu K, Liang Y (2019) Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int J Nanomed 14:5287–301

    CAS  Google Scholar 

  • Zhang H, Brown RL, Wei Y, Zhao P, Liu S, Liu X et al (2019) CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev 33(3–4):166–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BC, Luo BY, Zou JJ, Wu PY, Jiang JL, Le JQ et al (2020) Co-delivery of Sorafenib and CRISPR/Cas9 based on targeted core-shell hollow mesoporous organosilica nanoparticles for synergistic HCC therapy. ACS Appl Mater Interf 12(51):57362–72

    CAS  Google Scholar 

  • Zhang M, Zhu Z, Xun G, Zhao H (2023) To cut or not to cut: next-generation genome editors for precision genome engineering. Curr Opinion Biomed Eng 28:100489

    CAS  Google Scholar 

  • Zhao S, Jiang D, Wang F, Yang Y, Tabashnik BE, Wu Y (2021) Independent and synergistic effects of knocking out two ABC transporter genes on resistance to Bacillus thuringiensis toxins Cry1Ac and Cry1Fa in diamondback moth. Toxins 13(1):9

    CAS  Google Scholar 

  • Zhen S, Lu J, Liu YH, Chen W, Li X (2020) Synergistic antitumor effect on cervical cancer by rational combination of PD1 blockade and CRISPR-Cas9-mediated HPV knockout. Cancer Gene Ther 27(3–4):168–78

    CAS  PubMed  Google Scholar 

  • Zhen S, Qiang R, Lu J, Tuo X, Yang X, Li X (2021) Enhanced antiviral benefit of combination therapy with anti-HBV and anti-PD1 gRNA/cas9 produces a synergistic antiviral effect in HBV infection. Mol Immunol 130:7–13

    CAS  PubMed  Google Scholar 

  • Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F et al (2015) Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44 + human breast tumor xenografts. J Control Rel 205:144–54

    CAS  Google Scholar 

  • Zhou H, Feng B, Abudoureyimu M, Lai Y, Lin X, Tian C et al (2020) The functional role of long non-coding RNAs and their underlying mechanisms in drug resistance of non-small cell lung cancer. Life Sci 261:118362

    CAS  PubMed  Google Scholar 

  • Zhuang ZK, He MC, Lin TY, Wu RK, Guo JH, Wu ZK et al (2024) Exploration and clinical validation of the repair mode of the sclerotic zone of steroid-induced osteonecrosis of the femoral head based on Tandem Mass Tags technology. Chinese J Tissue Eng Res 28(14):2191–6

    Google Scholar 

  • Zuo J, Ma S (2024) Bioinformatics analysis and validation of differentially expressed genes and small molecule drug prediction in proliferative scar. Chinese J Tissue Eng Res 28(14):2166–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by [Zhujun Xu]. Finally, Zhujun Xu read and approved the final manuscript. Zhujun Xu was responsible for coordinating the authors, finalized and submitted the paper. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Zhujun Xu.

Ethics declarations

Ethical approval

Ethics approval for this type of article (A review) is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. Naunyn-Schmiedeberg's Arch Pharmacol 397, 2849–2876 (2024). https://doi.org/10.1007/s00210-023-02840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02840-8

Keywords

Navigation