Skip to main content

Advertisement

Log in

Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable

References

  • Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Orellana-Tavra C, Del Pozo V, Fairen-Jimenez D et al (2018a) Mechanistic investigation into the selective anticancer cytotoxicity and immune system response of surface-functionalized, dichloroacetate-loaded, UiO-66 nanoparticles. ACS Appl Mater Interfaces. 10(6):5255–68

    PubMed  Google Scholar 

  • Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Marshall RJ, Sastre B, Del Pozo V et al (2018b) Surface-functionalization of Zr-fumarate MOF for selective cytotoxicity and immune system compatibility in nanoscale drug delivery. ACS Appl Mater Interfaces. 10(37):31146–57

    PubMed  Google Scholar 

  • Abazari R, Ataei F, Morsali A, Slawin AMZ, Carpenter-Warren CL (2019a) A luminescent amine-functionalized metal-organic framework conjugated with folic acid as a targeted biocompatible pH-responsive nanocarrier for apoptosis induction in breast cancer cells. ACS Appl Mater Interfaces. 11(49):45442–54

    CAS  PubMed  Google Scholar 

  • Abazari R, Ataei F, Morsali A, Slawin AMZ, Carpenter-Warren CL (2019b) A luminescent amine-functionalized metal–organic framework conjugated with folic acid as a targeted biocompatible pH-responsive nanocarrier for apoptosis induction in breast cancer cells. ACS Appl Mater Interfaces 11(49):45442–54

    CAS  PubMed  Google Scholar 

  • Abdelhamid HN (2021) Zeolitic imidazolate frameworks (Zif-8) for biomedical applications: a review. Curr Med Chem. 28(34):7023–75

    CAS  PubMed  Google Scholar 

  • Abdollahi BB, Malekzadeh R, Azar FP, Salehnia F, Naseri AR, Ghorbani M et al (2021) Main approaches to enhance radiosensitization in cancer cells by nanoparticles: a systematic review. Adv Pharm Bull. 11(2):212–23

    CAS  Google Scholar 

  • Agnello L, Camorani S, Fedele M, Cerchia L (2021) Aptamers and antibodies: rivals or allies in cancer targeted therapy? Explor Target AntiTumor Ther. 2(1):107–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi Z, Yadav S, Kar AK, Jha D, Gautam HK, Patnaik S et al (2022) An injectable self-assembling hydrogel based on RGD peptidomimetic β-sheets as multifunctional biomaterials. Biomater Adv 133:112633

  • Al Musaimi O, Lombardi L, Williams DR, Albericio F (2022) Strategies for improving peptide stability and delivery. Pharmaceuticals. 15(10):1283

  • Alizadeh N, Salimi A, Hallaj R, Fathi F, Soleimani F (2018) Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: Toward colorimetric cancer cell detection and targeted therapeutics. J Nanobiotechnol 16(1):1–4

  • Almáši M, Zeleňák V, Palotai P, Beňová E, Zeleňáková A (2018) Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system. Inorg Chem Commun. 93:115–20

    Google Scholar 

  • Alsulays BB, Anwer MK, Soliman GA, Alshehri SM, Khafagy ES (2019) Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles. Int J Nanomedicine 14:9127–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves RC, Quijia CR, Bento da Silva P, Faria RS, Cabral Morais AA, Vasconcelos Morais JA et al (2023) Folic acid-conjugated curcumin-loaded bioMOF-101 for breast cancer therapy. J Drug Deliv Sci Technol 86:104702

    CAS  Google Scholar 

  • Anani T, Rahmati S, Sultana N, David AE (2020) MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics. 11(2):579–601

    Google Scholar 

  • Asghar K, Qasim M, Dharmapuri G, Das D (2017) Investigation on a smart nanocarrier with a mesoporous magnetic core and thermo-responsive shell for co-delivery of doxorubicin and curcumin: a new approach towards combination therapy of cancer. RSC Adv. 7(46):28802–18

    CAS  Google Scholar 

  • Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updates. 17(4–6):89–95

    Google Scholar 

  • Au KM, Satterlee A, Min Y, Tian X, Kim YS, Caster JM et al (2016) Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials. 82:178–93

    CAS  PubMed  Google Scholar 

  • Bae C, Kim H, Kook YM, Lee C, Kim C, Yang C et al (2022) Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater Today Bio 17:100457

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langery R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–70

    CAS  PubMed  Google Scholar 

  • Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M et al (2015) Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biol. 36(8):5727–42

    CAS  Google Scholar 

  • Balasamy RJ, Ravinayagam V, Alomari M, Ansari MA, Almofty SA, Rehman S et al (2019) Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv. 9(72):42395–408

    CAS  PubMed Central  Google Scholar 

  • Bartouskova M, Melichar B, Mohelnikova-Duchonova B (2015) Folate receptor: a potential target in ovarian cancer. Pteridines. 26(1):1–12

    CAS  Google Scholar 

  • Beik J, Khademi S, Attaran N, Sarkar S, Shakeri-Zadeh A, Ghaznavi H et al (2017) A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: folate-conjugated gold nanoparticles. Curr Med Chem. 24(39):4399–416

    CAS  PubMed  Google Scholar 

  • Bellotti E, Cascone MG, Barbani N, Rossin D, Rastaldo R, Giachino C et al (2021) Targeting cancer cells overexpressing folate receptors with new terpolymer-based nanocapsules: toward a novel targeted DNA delivery system for cancer therapy. Biomedicines 9(9):1275

  • Bi J, Lu Y, Dong Y, Gao P (2018a) Synthesis of folic acid-modified DOX@ZIF-8 nanoparticles for targeted therapy of liver cancer. J Nanomater 2018:1357812

    Google Scholar 

  • Bi J, Lu YS, Dong Y, Gao P (2018b) Synthesis of folic acid-modified DOX@ZIF-8 nanoparticles for targeted therapy of liver cancer. J Nanomater. 2018:5

    Google Scholar 

  • Bioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE et al (2006) Melan-A/MART-1-specific CD4 T cells in melanoma patients: Identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J Immunol 177(10):6769–79

    CAS  PubMed  Google Scholar 

  • Bisht S, Schlesinger M, Rupp A, Schubert R, Nolting J, Wenzel J et al (2016) A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies. J Nanobiotechnology 14(1):1–15

  • Boddu S, Vaishya R, Jwala J, Vadlapudi A, Pal D, Mitra A (2012) Preparation and characterization of folate conjugated nanoparticles of doxorubicin using PLGA-PEG-FOL polymer. Med Chem. 2(4):68–75

    CAS  Google Scholar 

  • Boroujeni MB, Hashemzadeh A, Shaabani A, Amini MM (2017) In situ synthesis of metallophthalocyanines into pores of MIL-101: a novel and green strategy for preparation of host–guest catalysts. Appl Organomet Chem 31(10):e3715

    Google Scholar 

  • Boss SD, Ametamey SM (2020) Development of folate receptor−targeted pet radiopharmaceuticals for tumor imaging—a bench-to-bedside journey. Cancers. 12(6):1–20

    Google Scholar 

  • Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB et al (2016) Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int J Nanomed. 11:413–28

    CAS  Google Scholar 

  • Cé R, Couto GK, Pacheco BZ, Dallemole DR, Paschoal JD, Pacheco BS et al (2021) Folic acid-doxorubicin polymeric nanocapsules: a promising formulation for the treatment of triple-negative breast cancer. Eur J Pharm Sci 165:105943

  • Chen X, Shi Z, Tong R, Ding S, Wang X, Wu J et al (2018) Derivative of epigallocatechin-3-gallatea encapsulated in ZIF-8 with polyethylene glycol-folic acid modification for target and pH-responsive drug release in anticancer research. ACS Biomater Sci Eng. 4(12):4183–92

    CAS  PubMed  Google Scholar 

  • Chen Y, Liu W, Shang Y, Cao P, Cui J, Li Z et al (2019) Folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int J Nanomedicine 57–74

  • Chen H, Shan Y, Cao L, Zhao P, Cao C, Li F et al (2021) Enhanced fungicidal efficacy by co-delivery of azoxystrobin and diniconazole with cauliflower-like metal–organic frameworks NH2-Al-MIL-101. Int J Mol Sci 22(19):10412

  • Chen M, Song F, Wu N, Luo H, Cai X, Li Y (2022a) Corn-like mSiO2@ZIF-8 composite load with curcumin for target cancer drug-delivery system. ChemistrySelect 7(47):e202204213

  • Chen N, Li S, Li X, Zhan Q, Li L, Long L et al (2022b) Construction of enzymatic nanoreactors with high catalytic activity in millifluidic systems for cancer therapy. Chem Eng J 429:132305

  • Chen Z, Li Z, Li C, Huang H, Ren Y, Li Z et al (2022c) Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Drug Deliv. 29(1):1201–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Li C, Zhu X, Han W, Li J, Lv Y (2019) Doxorubicin-loaded Fe3O4-ZIF-8 nano-composites for hepatocellular carcinoma therapy. J Biomater Appl. 33(10):1373–81

    CAS  PubMed  Google Scholar 

  • Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ et al (2020) Folic acid conjugated nanocarriers for efficient targetability and promising anticancer efficacy for treatment of breast cancer: a review of recent up-dates. Curr Pharm Des. 26(42):5365–79

    CAS  PubMed  Google Scholar 

  • Chowdhuri AR, Laha D, Pal S, Karmakar P, Sahu SK (2016) One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Trans. 45(45):18120–32

    CAS  PubMed  Google Scholar 

  • Chowdhuri AR, Das B, Kumar A, Tripathy S, Roy S, Sahu SK (2017) One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective antibacterial agent against multidrug-resistant Staphylococcus aureus. Nanotechnology 28(9):095102

  • Chu Z, Tian T, Tao Z, Yang J, Chen B, Chen H et al (2022) Upconversion nanoparticles@AgBiS2 core-shell nanoparticles with cancer-cell-specific cytotoxicity for combined photothermal and photodynamic therapy of cancers. Bioact Mater. 17:71–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chude CI, Amaravadi RK (2017) Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci 18(6):1279

  • Chwalek K, Levental KR, Tsurkan MV, Zieris A, Freudenberg U, Werner C (2011) Two-tier hydrogel degradation to boost endothelial cell morphogenesis. Biomaterials. 32(36):9649–57

    CAS  PubMed  Google Scholar 

  • Coluccia M, Parisse V, Guglielmi P, Giannini G, Secci D (2022) Metal-organic frameworks (MOFs) as biomolecules drug delivery systems for anticancer purposes. Eur J Med Chem 244:114801

  • Cros J, Sbidian E, Hans S, Roussel H, Scotte F, Tartour E et al (2013) Expression and mutational status of treatment-relevant targets and key oncogenes in 123 malignant salivary gland tumours. Ann Oncol 24(10):2624–9

    CAS  PubMed  Google Scholar 

  • Crous A, Abrahamse H (2020) Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci 21(11):3742

  • Curnis F, Longhi R, Crippa L, Cattaneo A, Dondossola E, Bachi A et al (2006) Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem 281(47):36466–76

    CAS  PubMed  Google Scholar 

  • Dai H, Yuan X, Jiang L, Wang H, Zhang J, Zhang J et al (2021) Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: fabrication, applications and perspective. Coord Chem Rev 441:213985

  • Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Psilopatis I, Sarantis P et al (2022) Targeted therapies for hepatocellular carcinoma treatment: a new era ahead—a systematic review. Int J Mol Sci 23(22):14117

  • Darvish Pour-Mogahi S, Ansari-Asl Z, Darabpour E (2021) Polycaprolactone/ZIF-8 nanocomposites fabricated for oil sorption and antibacterial applications. Inorg Chem Commun 133:108945

  • Daryasari MP, Akhgar MR, Mamashli F, Bigdeli B, Khoobi M (2016) Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. Rsc Adv 6(107):105578–88

    CAS  Google Scholar 

  • Deng X, Zhao R, Song Q, Zhang Y, Zhao H, Hu H et al (2022) Synthesis of dual-stimuli responsive metal organic framework-coated iridium oxide nanocomposite functionalized with tumor targeting albumin-folate for synergistic photodynamic/photothermal cancer therapy. Drug Deliv. 29(1):3142–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Didamson OC, Chandran R, Abrahamse H (2022) A gold nanoparticle bioconjugate delivery system for active targeted photodynamic therapy of cancer and cancer stem cells. Cancers 14(19):4558

  • Ding M, Liu W, Gref R (2022) Nanoscale MOFs: from synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 190:114496

  • Dixit S, Sahu R, Singh SR, Dennis VA, editors (2016) PLA-PEG nanoparticles are suitable for effective maturation and uptake by dendritic cells for Chlamydia trachomatis outer membrane peptide-based vaccine. Advanced Materials - TechConnect Briefs 2016

  • Dodda JM, Remiš T, Rotimi S, Yeh YC (2022) Progress in the drug encapsulation of poly(lactic-co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B. 10(22):4127–41

    CAS  PubMed  Google Scholar 

  • Dong H, Yang GX, Zhang X, Meng XB, Sheng JL, Sun XJ et al (2018a) Folic acid functionalized zirconium-based metal–organic frameworks as drug carriers for active tumor-targeted drug delivery. Chem Eur J. 24(64):17148–54

    CAS  PubMed  Google Scholar 

  • Dong H, Yang G-X, Zhang X, Meng X-B, Sheng J-L, Sun X-J et al (2018b) Folic acid functionalized zirconium-based metal–organic frameworks as drug carriers for active tumor-targeted drug delivery. Chem Eur J 24(64):17148–54

    CAS  PubMed  Google Scholar 

  • Du CL, Gu YQ (2012) Current research progress of the folate-targeted cancer therapies. Chin J Pharm Biotechnol 19(3 A):261–4

    CAS  Google Scholar 

  • Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A (2022) An updated review of folate-functionalized nanocarriers: a promising ligand in cancer. Drug Discov Today. 27(2):471–89

    CAS  PubMed  Google Scholar 

  • Edelman R, Assaraf YG, Levitzky I, Shahar T, Livney YD (2017) Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget. 8(15):24337–53

    PubMed  PubMed Central  Google Scholar 

  • Elkhodiry MA, Husseini GA, Velluto D (2016) Targeting the folate receptor: effects of conjugating folic acid to DOX loaded polymeric micelles. Anti-Cancer Agents Med Chem. 16(10):1275–80

    CAS  Google Scholar 

  • Esthar S, Rajesh J, Prakash N, Ayyanaar S, Bhaskar R, Thanigaivel S et al (2023) An effective biodegradable curcumin loaded magnetic microsphere: applications for drug delivery and cancer treatment. Pharmacol Res 6:100219

  • Etrych T, Janoušková O, Chytil P (2019) Fluorescence imaging as a tool in preclinical evaluation of polymer-based nano-DDS systems intended for cancer treatment. Pharmaceutics 11(9):471

  • Farabegoli F, Pinheiro M (2022) Epigallocatechin-3-gallate delivery in lipid-based nanoparticles: potentiality and perspectives for future applications in cancer chemoprevention and therapy. Front Pharmacol 13:809706

  • Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han Y-K et al (2020) Folate-conjugated nanovehicles: strategies for cancer therapy. Mater Sci Eng: C. 107:110341

    CAS  Google Scholar 

  • Feng A, Wang Y, Ding J, Xu R, Li X (2021a) Progress of stimuli-responsive nanoscale metal organic frameworks as controlled drug delivery systems. Curr Drug Deliv. 18(3):297–311

    CAS  PubMed  Google Scholar 

  • Feng S, Zhang X, Shi D, Wang Z (2021b) Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review. Front Chem Sci Eng. 15(2):221–37

    CAS  Google Scholar 

  • Fernández M, Javaid F, Chudasama V (2018) Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 9(4):790–810

    PubMed  Google Scholar 

  • Fernández-Acosta R, Iriarte-Mesa C, Alvarez-Alminaque D, Hassannia B, Wiernicki B, Díaz-García AM et al (2022) Novel iron oxide nanoparticles induce ferroptosis in a panel of cancer cell lines. Molecules 27(13):3970

  • Filipits M (2004) Mechanisms of cancer: multidrug resistance. Drug DiscovToday Dis Mech. 1(2):229–34

    CAS  Google Scholar 

  • Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5(1):1–6

  • Fu S, Xu X, Ma Y, Zhang S, Zhang S (2019) RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy. J Drug Target 27(1):1–11

    CAS  PubMed  Google Scholar 

  • Fujii H, Nishikawa N, Komazawa H, Suzuki M, Kojima M, Itoh I et al (1998) A new pseudo-peptide of Arg-Gly-Asp (RGD) with inhibitory effect on tumor metastasis and enzymatic degradation of extracellular matrix. Clin Exp Metastasis 16(1):94–104

    CAS  PubMed  Google Scholar 

  • Fung MKL, Chan GCF (2017) Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol 10(1):1–8

  • Fytory M, Arafa KK, El Rouby WMA, Farghali AA, Abdel-Hafiez M, El-Sherbiny IM (2021) Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment. Sci Rep 11(1):19808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gangopadhyay S, Nikam RR, Gore KR (2021) Folate receptor-mediated siRNA delivery: recent developments and future directions for RNAi therapeutics. Nucleic Acid Therape. 31(4):245–70

    CAS  Google Scholar 

  • Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J et al (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem. 18(11):3203–7

    CAS  Google Scholar 

  • Gao X, Zhai M, Guan W, Liu J, Liu Z, Damirin A (2017) Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl Mater Interfaces. 9(4):3455–62

    CAS  PubMed  Google Scholar 

  • Gao X, Cui R, Ji G, Liu Z (2018) Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale. 10(13):6205–11

    CAS  PubMed  Google Scholar 

  • Gao L, Chen Q, Gong T, Liu J, Li C (2019) Recent advancement of imidazolate framework (ZIF-8) based nanoformulations for synergistic tumor therapy. Nanoscale. 11(44):21030–45

    CAS  PubMed  Google Scholar 

  • Gao L, Wu Z, Ibrahim AR, Zhou SF, Zhan G (2020) Fabrication of folic acid-decorated hollow ZIF-8/Au/CuS nanocomposites for enhanced and selective anticancer therapy. ACS Biomater Sci Eng. 6(11):6095–107

    CAS  PubMed  Google Scholar 

  • Gao X, Hai X, Baigude H, Guan W, Liu Z (2016) Fabrication of functional hollow microspheres constructed from MOF shells: promising drug delivery systems with high loading capacity and targeted transport. Sci Rep 6(1):37705

  • Garcia-Bermudez J, Williams RT, Guarecuco R, Birsoy K (2020) Targeting extracellular nutrient dependencies of cancer cells. Mol Metab. 33:67–82

    CAS  PubMed  Google Scholar 

  • Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L et al (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release. 120(3):195–204

    CAS  PubMed  Google Scholar 

  • Geersing A, de Vries RH, Jansen G, Rots MG, Roelfes G (2019) Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorg Med Chem Lett. 29(15):1922–7

    CAS  PubMed  Google Scholar 

  • Ghosh S, Gul AR, Xu P, Lee SY, Rafique R, Kim YH et al (2022) Target delivery of photo-triggered nanocarrier for externally activated chemo-photodynamic therapy of prostate cancer. Mater Today Chem. 23:13

    Google Scholar 

  • Granja A, Pinheiro M, Reis S (2016) Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients 8(5):307

  • Guo W, Jing H, Yang W, Guo Z, Feng S, Zhang X (2011) Radiolabeling of folic acid-modified chitosan with 99mtc as potential agents for folate-receptor-mediated targeting. Bioorg Med Chem Lett. 21(21):6446–50

    CAS  PubMed  Google Scholar 

  • Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3 PART A):427–43

    CAS  PubMed  Google Scholar 

  • Hamamoto T, Sisido M, Ohtsuki T, Taki M (2011) Synthesis of a cyclic peptide/protein using the NEXT-A reaction followed by cyclization. Chem Commun 47(32):9116–8

    CAS  Google Scholar 

  • Hao F, Yan ZY, Yan XP (2022) Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. Chemosphere 307:135680

  • Hashemzadeh A, Drummen GP, Avan A, Darroudi M, Khazaei M, Khajavian R et al (2021a) When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B. 9(19):3967–82

    CAS  PubMed  Google Scholar 

  • Hashemzadeh A, Amerizadeh F, Asgharzadeh F, Darroudi M, Avan A, Hassanian SM et al (2021b) Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH2. Toxicol Appl Pharmacol 423:115573

    CAS  PubMed  Google Scholar 

  • Hashemzadeh A, Amerizadeh F, Asgharzadeh F, Drummen GP, Hassanian SM, Landarani M et al (2022) Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: in vitro studies. J Clust Sci 33(5):2345–61

    CAS  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci. 94(10):2135–46

    CAS  PubMed  Google Scholar 

  • Ho PH, Salles F, Di Renzo F, Trens P (2020) One-pot synthesis of 5-FU@ZIF-8 and ibuprofen@ZIF-8 nanoparticles. Inorg Chim Acta 500:119229

  • Hong EJ, Kim YS, Choi DG, Shim MS (2018) Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles. J Ind Eng Chem 67:429–36

    CAS  Google Scholar 

  • Hong W, Guo F, Yu N, Ying S, Lou B, Wu J et al (2021) A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-cyclodextrin nanoparticles for cancer treatment. Drug Des Dev Ther. 15:2843–55

    Google Scholar 

  • Hoop M, Walde CF, Riccò R, Mushtaq F, Terzopoulou A, Chen XZ et al (2018) Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl Mater Today. 11:13–21

    Google Scholar 

  • Hoseinpour V, Shariatinia Z (2021) Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: a review. Tissue Cell 72:101588

  • Hou J, Zhang Q, Li X, Tang Y, Cao MR, Bai F et al (2011) Synthesis of novel folate conjugated fluorescent nanoparticles for tumor imaging. J Biomed Mater Res Part A. 99 A(4):684–9

    Google Scholar 

  • Hu Y, He Y, Ji J, Zheng S, Cheng Y (2020) Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int J Nanomed. 15:1239–52

    CAS  Google Scholar 

  • Hu H, Xu D, Xu Q, Tang Y, Hong J, Hu Y et al (2023) Reduction-responsive worm-like nanoparticles for synergistic cancer chemo-photodynamic therapy. Mater Today Bio 18:100542

  • Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 1(1):13–28

    Google Scholar 

  • Indar A, Maxwell-Armstrong CA, Durrant LG, Carmichael J, Scholefield JH (2002) Current concepts in immunotherapy for the treatment of colorectal cancer. J R Coll Surg Edinb 47(2):458–74

    CAS  PubMed  Google Scholar 

  • Jakubek M, Kejík Z, Kaplánek R, Hromádka R, Šandriková V, Sýkora D et al (2019) Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother 118:109278

  • Jang B, Moorthy MS, Manivasagan P, Xu L, Song K, Lee KD et al (2018) Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget. 9(16):12649–61

    PubMed  PubMed Central  Google Scholar 

  • Jansen G, Peters GJ (2015) Novel insights in folate receptors and transporters: implications for disease and treatment of immune diseases and cancer. Pteridines. 26(2):41–53

    CAS  Google Scholar 

  • Javid H, Hashemy SI, Heidari MF, Esparham A, Gorgani-Firuzjaee S (2022) The anticancer role of cerium oxide nanoparticles by inducing antioxidant activity in esophageal cancer and cancer stem-like ESCC spheres. BioMed Res Int 2022:3268197

  • Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H et al (2023) The therapeutic potential of immunotherapy in the treatment of breast cancer: rational strategies and recent progress. J Cell Biochem 124(4):477–94

  • Jayachandran B, Parvin TN, Alam MM, Chanda K, Mm B (2022) Insights on chemical crosslinking strategies for proteins. Molecules. 27(23):8124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhang H, Wu J, Zhai G, Li Z, Luan Y et al (2018) CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy. ACS Appl Mater Interfaces. 10(40):34513–23

    CAS  PubMed  Google Scholar 

  • Jiang P, Hu Y, Li G (2019) Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Talanta. 200:212–7

    CAS  PubMed  Google Scholar 

  • Jiang Q, Zhang M, Sun Q, Yin D, Xuan Z, Yang Y (2021) Enhancing the antitumor effect of doxorubicin with photosensitive metal-organic framework nanoparticles against breast cancer. Mol Pharm. 18(8):3026–36

    CAS  PubMed  Google Scholar 

  • Jin H, Lin X, Gao M, Cui L, Liu Y (2020) Peptide-decorated supramolecules for subcellular targeted cancer therapy: recent advances. Front Chem 8:824

  • Ju G, Liu B, Ji M, Jin R, Xu X, Xiao Y et al (2021) Folic acid–modified miR-491-5p–loaded ZIF-8 nanoparticles inhibit castration-resistant prostate cancer by regulating the expression of EPHX1. Front Bioeng Biotechnol 9:706536

  • Jung S, Chang S, Kim NE, Choi SO, Song YJ, Yuan Y et al (2022) Curcumin/zeolitic imidazolate framework-8 nanoparticle-integrated microneedles for pH-responsive treatment of skin disorders. ACS Appl Nano Mat. 5(9):13671–9

    CAS  Google Scholar 

  • Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J (2021) Single- versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics 13(3):326

  • Kah G, Chandran R, Abrahamse H (2023) Curcumin a natural phenol and its therapeutic role in cancer and photodynamic therapy: a review. Pharmaceutics 15(2):639

  • Kamei N, Nielsen EJB, Khafagy ES, Takeda-Morishita M (2013) Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Ther Deliv 4(3):315–26

    CAS  PubMed  Google Scholar 

  • Kang W, Tian Y, Zhao Y, Yin X, Teng Z (2022) Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv. 12(26):16927–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi S, Namazi H (2021) Synthesis of folic acid-conjugated glycodendrimer with magnetic β-cyclodextrin core as a pH-responsive system for tumor-targeted co-delivery of doxorubicin and curcumin. Colloids Surf A Physicochem Eng Asp 627:127205

  • Karimi S, Namazi H (2023) Fabrication of biocompatible magnetic maltose/MIL-88 metal–organic frameworks decorated with folic acid-chitosan for targeted and pH-responsive controlled release of doxorubicin. Int J Pharm 634:122675

  • Karimi-Shahri M, Alalikhan A, Hashemian P, Hashemzadeh A, Javid DH (2022) The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. Nanotechnology 34:212001

  • Ke C-Y, Mathias CJ, Green MA (2003) The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 30(8):811–7

    CAS  PubMed  Google Scholar 

  • Khafagy ES, Iwamae R, Kamei N, Takeda-Morishita M (2015) Region-dependent role of cell-penetrating peptides in insulin absorption across the rat small intestinal membrane. AAPS J 17(6):1427–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalilian SF, Tohidi M, Rastegari B (2023) Synthesis of biocompatible nanoporous ZIF-8-gum Arabic as a new carrier for the targeted delivery of curcumin. ACS Omega. 8(3):3245–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AAP, Patil MB, Rathod LP, Vader SG, Raizada P, Singh P et al (2023) Polymer membranes of zeolitic imidazole framework-8 with sodium alginate synthesized from ZIF-8 and their application in light gas separation. Polym 15(4):1011

  • Kharkar PS, Soni G, Rathod V, Shetty S, Gupta MK, Yadav KS (2020) An outlook on procedures of conjugating folate to (co)polymers and drugs for effective cancer targeting. Drug Dev Res. 81(7):823–36

    CAS  PubMed  Google Scholar 

  • Khosravi H, Doosti-Irani A, Bouraghi H, Nikzad S (2022) Investigation of gold nanoparticles effects in radiation therapy of cancer: a systematic review. J Adv Med Biomed Res. 30(142):388–96

    Google Scholar 

  • Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning CJ et al (2014a) Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine: Nanotechnol Biol Med 10(8):1787–98

    CAS  Google Scholar 

  • Knuschke T, Epple M, Westendorf AM (2014b) The type of adjuvant strongly influences the T-cell response during nanoparticle-based immunization. Hum Vaccines Immunotherapeutics 10(1):164–9

    CAS  Google Scholar 

  • Kristensen M, Nielsen HM (2016) Cell-penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic Clin Pharmacol Toxicol 118(2):99–106

    CAS  PubMed  Google Scholar 

  • Kulbacka J, Wilk KA, Bazylińska U, Dubińska-Magiera M, Potoczek S, Saczko J (2022) Curcumin loaded nanocarriers with varying charges augmented with electroporation designed for colon cancer therapy. Int J Mol Sci 23(3):1377

  • Kumar A, Jaitak V (2019) Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 176:268–91

    CAS  PubMed  Google Scholar 

  • Kundu M, Sadhukhan P, Ghosh N, Chatterjee S, Manna P, Das J et al (2019) pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res. 18:161–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo MT, Chen HHW, Feun LG, Savaraj N (2021) Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals. 14(1):1–20

    Google Scholar 

  • Kusumanchi P, Zhang Y, Jani MB, Jayaram NH, Khan RA, Tang Y et al (2013) Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin. Cancer Gene Ther. 20(7):403–12

    CAS  PubMed  Google Scholar 

  • Laha D, Pal K, Chowdhuri AR, Parida PK, Sahu SK, Jana K et al (2019) Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J Chem 43(1):217–29

    CAS  Google Scholar 

  • Lai H, Ding X, Ye J, Deng J, Cui S (2021) pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 198:111455

  • Lawson HD, Walton SP, Chan C (2021) Metal-organic frameworks for drug delivery: a design perspective. ACS Appl Mater Interfaces 13(6):7004–20

    CAS  PubMed  Google Scholar 

  • Lee J, Oh ET, Han Y, Kim HG, Park HJ, Kim C (2017) Mesoporous silica nanocarriers with cyclic peptide gatekeeper: specific targeting of aminopeptidase N and triggered drug release by stimuli-responsive conformational transformation. Chem Eur J 23(67):16966–71

    CAS  PubMed  Google Scholar 

  • Lee YR, Do XH, Cho KY, Jeong K, Baek K-Y (2020) Amine-functionalized zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for adsorption of radioactive iodine. ACS Appl Nano Mater. 3(10):9852–61

    CAS  Google Scholar 

  • Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135(32):11688–91

    CAS  PubMed  Google Scholar 

  • Li YA, Zhao XD, Yin HP, Chen GJ, Yang S, Dong YB (2016a) A drug-loaded nanoscale metal-organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem Commun. 52(98):14113–6

    CAS  Google Scholar 

  • Li WA, Lu BY, Gu L, Choi Y, Kim J, Mooney DJ (2016b) The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials. 83:249–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JJ, Yang Z, Huang ZS (2019) Progress in basic and clinical research on molecular targeted therapy for primary hepatic carcinoma. World Chin J Dig. 27(10):643–50

    CAS  Google Scholar 

  • Li Z, Li X, Ai S, Liu S, Guan W (2022a) Glucose metabolism intervention-facilitated nanomedicine therapy. Int J Nanomed. 17:2707–31

    Google Scholar 

  • Li J, Tong D, Lin J (2022b) Current status of cancer starvation therapy. Zhejiang Da Xue Xue Bao Yi Xue Ban. 51(2):241–50

    PubMed  PubMed Central  Google Scholar 

  • Li H, Wei M, Lv X, Hu Y, Shao J, Song X et al (2022c) Cerium-based nanoparticles for cancer photodynamic therapy. J Innovative Opt Health Sci 15(06):2230009

  • Li X, Ji Q, Yan C, Zhu Z, Yan Z, Chen P et al (2022d) H2O2/pH dual-responsive biomimetic nanoenzyme drugs delivery system for enhanced tumor photodynamic therapy. Nanoscale Res Lett 17(1):103

  • Li K, Xu K, He Y, Yang Y, Tan M, Mao Y et al (2023a) Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast cancer. ACS Nano. 17(5):4667–87

    CAS  PubMed  Google Scholar 

  • Li K, Xu K, He Y, Yang YL, Tan MJ, Mao YL et al (2023b) Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast cancer. Acs Nano. 17(5):4667–87

    CAS  PubMed  Google Scholar 

  • Li K, Teng C, Min Q (2020) Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem 8:573297

  • Liang L, Zhang X, Su X, Li J, Tian Y, Xue H et al (2018) 99mTc-labeled oligomeric nanoparticles as potential agents for folate receptor-positive tumor targeting. J Label Compd Radiopharm. 61(2):54–60

    CAS  Google Scholar 

  • Lima-Sousa R, de Melo-Diogo D, Alves CG, Costa EC, Ferreira P, Louro RO et al (2018) Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr Polym. 200:93–9

    CAS  PubMed  Google Scholar 

  • Lin CJ, Tsao YN, Shu CW (2021) Autophagy modulation as a potential targeted cancer therapy: from drug repurposing to new drug development. Kaohsiung J Med Sci. 37(3):166–71

    CAS  PubMed  Google Scholar 

  • Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D (2022) The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev. 51(14):6065–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li K, Pan J, Liu B, Feng SS (2010) Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 31(2):330–8

    CAS  PubMed  Google Scholar 

  • Liu C, Yang Y, Chen L, Lin YL, Li F (2014) A unified mechanism for aminopeptidase N-based tumor cell motility and tumor-homing therapy. J Biol Chem 289(50):34520–9

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Fan L, Xu C, Sun K, Shi Z, Li L (2018) MIL-101/CDs/MIL-101 for potential fluorescence imaging and pH-responsive drug delivery. Mater Lett. 211:32–5

    CAS  Google Scholar 

  • Liu JH, Tang MH, Zhou YH, Long YJ, Cheng Y, Zheng HZ (2020a) A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv. 10(12):6919–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wu J, Ji X, Ma Y, Liu L, Zong X et al (2020b) Advanced biomimetic nanoreactor for specifically killing tumor cells through multi-enzyme cascade. Theranostics 10(14):6245–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liang T, Zhang R, Ding Q, Wu S, Li C et al (2021a) Iron-based metal-organic frameworks in drug delivery and biomedicine. ACS Appl Mater Interfaces. 13(8):9643–55

    CAS  PubMed  Google Scholar 

  • Liu X, Jin LL, Zhao LL, Wang YC, Zhang L, Huang ZZ et al (2021b) In-vivo thrombolytic efficacy of RGD modified protein-polymer conjugated urokinase nanogels. Polymer Testing 104:107392

  • Liu X, Hao Y, Popovtzer R, Feng L, Liu Z (2021c) Construction of enzyme nanoreactors to enable tumor microenvironment modulation and enhanced cancer treatment. Adv Healthc Mater 10(5):2001167

  • Liu H, Jin F, Liu D, Liu W, Zhao J, Chen P et al (2022a) Synthesis of ZIF-8 derived porous carbon/NiS hexahedral composite and its application in improving the electrochemical hydrogen storage properties of Co–P material. Int J Hydrogen Energy. 47(47):20572–84

    CAS  Google Scholar 

  • Liu W, Semcheddine F, Guo Z, Jiang H, Wang X (2022b) Glucose-responsive ZIF-8 nanocomposites for targeted cancer therapy through combining starvation with stimulus-responsive nitric oxide synergistic treatment. ACS Appl Bio Mater. 5(6):2902–12

    CAS  PubMed  Google Scholar 

  • Liu B, Sun L, Lu X, Yang Y, Peng H, Sun Z et al (2022c) Real-time drug release monitoring from pH-responsive CuS-encapsulated metal-organic frameworks. RSC Adv. 12(18):1119–27

    Google Scholar 

  • Liu B, Liu X, Zhang X, Wu X, Li C, Sun Z et al (2022d) Facile synthesis of degradable DOX/ICG co-loaded metal–organic frameworks for targeted drug release and thermoablation. Cancer Nanotechnol 13(1):1–3

  • Liu S, Wang J, Song Y, He S, Tan H (2022e) The recent development of multifunctional gold nanoclusters in tumor theranostic and combination therapy. Pharmaceutics 14(11):2451

  • Liu W, Semcheddine F, Jiang H, Wang X (2022f) Acid-responsive multifunctional zeolitic imidazolate framework-8 (ZIF-8) nanocomposites for tumor chemo-photothermal synergistic therapy. Bioconjugate Chem. 33(7):1405–14

    CAS  Google Scholar 

  • Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL et al (2023) Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 8(1):39

  • Lu Y, Low PS (2012) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 64(SUPPL.):342–52

    Google Scholar 

  • Luo T, Wang Y, Wang J (2022) Ferroptosis assassinates tumor. J Nanobiotechnology 20(1):1–8

  • Ma A, Luo Z, Gu C, Li B, Liu J (2017) Cytotoxicity of a metal–organic framework: drug delivery. Inorg Chem Commun. 77:68–71

    CAS  Google Scholar 

  • Ma YX, Wang CW, Zhu M, Yu CM, Lu B, Wang Y et al (2022) Polydopamine-drug conjugate nanocomposites based on ZIF-8 for targeted cancer photothermal-chemotherapy. J Biomed Mater Res Part A. 110(4):954–63

    CAS  Google Scholar 

  • Ma A, Zhang R (2020) Facile synthesis of redox-responsive paclitaxel drug release platform using metal-organic frameworks (ZIF-8) for gastric cancer treatment. Mater Res Express 7(9):095402

  • Madani F, Abdo R, Lindberg S, Hirose H, Futaki S, Langel Ü et al (2013) Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochim Biophys Acta - Biomembr. 1828(4):1198–204

    CAS  Google Scholar 

  • Makowski M, Silva ÍC, Do Amaral CP, Gonçalves S, Santos NC (2019) Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics 11(11):588

  • Maranescu B, Visa A (2022) Applications of metal-organic frameworks as drug delivery systems. Int J Mol Sci 23(8):4458

  • Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Venkatachalam K, Wang MH (2020) Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int J Biol Macromol. 164:2073–84

    CAS  PubMed  Google Scholar 

  • Mc Carron P, Crowley A, O’Shea D, McCann M, Howe O, Hunt M et al (2018) Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry. Curr Med Chem. 25(23):2675–708

    Google Scholar 

  • Mehrnia SS, Hashemi B, Mowla SJ, Nikkhah M, Arbabi A (2021) Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles. Radiat Oncol 16:1–2

  • Mi X, Hu M, Dong M, Yang Z, Zhan X, Chang X et al (2021b) Folic acid decorated zeolitic imidazolate framework (ZIF-8) loaded with baicalin as a nano-drug delivery system for breast cancer therapy. Int J Nanomedicine. 16:8337–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi X, Hu M, Dong M, Yang Z, Zhan X, Chang X et al (2021c) Folic acid decorated zeolitic imidazolate framework (ZIF-8) loaded with baicalin as a nano-drug delivery system for breast cancer therapy. Int J Nanomed. 16:8337–52

    CAS  Google Scholar 

  • Mi X, Hu M, Dong M, Yang Z, Zhan X, Chang X, et al. (2021a) Folic acid decorated zeolitic imidazolate framework (ZIF-8) loaded with baicalin as a nano-drug delivery system for breast cancer therapy. Int J Nanomedicine. 8337-52.

  • Miller SC, Beviglia L, Yeung P, Bhattacharyya S, Sobek D, editors (2012) Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications IV, vol 8233. San Francisco, CA, pp 149–154

  • Miranda MA, Silva LB, Carvalho IPS, Amaral R, de Paula MH, Swiech K et al (2020) Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays. Colloids Surf B Biointerfaces 192:111106

  • Moharil P, Wan Z, Pardeshi A, Li J, Huang H, Luo Z et al (2022) Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B. 12(3):1148–62

    CAS  PubMed  Google Scholar 

  • Mohsen S, Sobash PT, Algwaiz GF, Nasef N, Al-Zeidaneen SA, Karim NA (2022) Autophagy agents in clinical trials for cancer therapy: a brief review. Curr Oncol. 29(3):1695–708

    PubMed  PubMed Central  Google Scholar 

  • Mokhtarian F, Rastegari B, Zeinali S, Tohidi M, Karbalaei-Heidari HR (2022a) Theranostic effect of folic acid functionalized MIL-100(Fe) for delivery of prodigiosin and simultaneous tracking-combating breast cancer. J Nanomater 2022:1108865

    Google Scholar 

  • Mokhtarian F, Rastegari B, Zeinali S, Tohidi M, Karbalaei-Heidari HR (2022b) Theranostic effect of folic acid functionalized MIL-100(Fe) for delivery of prodigiosin and simultaneous tracking-combating breast cancer. J Nanomater 2022:1–6

  • Müller C, Schibli R (2011) Folic acid conjugates for nuclear imaging of folate receptor-positive cancer. J Nucl Med. 52(1):1–4

    PubMed  Google Scholar 

  • Munasinghe VK, Manawadu D, de Silva RM, de Silva KMN (2023) Impact of active sites on encapsulation of curcumin in Metal Organic Frameworks. Mater Res Express 10(3):035102

  • Murar M, Albertazzi L, Pujals S (2022) Advanced optical imaging-guided nanotheranostics toward personalized cancer drug delivery. Nanomaterials 12(3):399

  • Murer K, Urosevic M, Willers J, Selvam P, Laine E, Burg G et al (2004) Expression of Melan-A/MART-1 in primary melanoma cell cultures has prognostic implication in metastatic melanoma patients. Melanoma Res 14(4):257–62

    CAS  PubMed  Google Scholar 

  • Nabipour H, Mansoorianfar M, Hu Y (2022) Carboxymethyl cellulose-coated HKUST-1 for baclofen drug delivery in vitro. Chem Pap. 76(10):6557–66

    CAS  Google Scholar 

  • Nawaz FZ, Kipreos ET (2022) Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol Metab. 33(3):159–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S et al (2019) Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater Sci Eng C. 99:805–15

    CAS  Google Scholar 

  • Nguyen TMT, Chen JW, Pham MT, Bui HM, Hu CC, You SJ et al (2023) A high-performance ZIF-8 membrane for gas separation applications: synthesis and characterization. Environ Technol Innov 31:103169

  • Njaramba LK, Kim M, Yea Y, Yoon Y, Park CM (2023) Efficient adsorption of naproxen and ibuprofen by gelatin/zirconium-based metal–organic framework/sepiolite aerogels via synergistic mechanisms. Chem Eng J 15(452):139426

  • Orafaie A, Bahrami AR, Matin MM (2021) Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine. 16(5):415–33

    CAS  PubMed  Google Scholar 

  • Orellana-Tavra C, Mercado SA, Fairen-Jimenez D (2016) Endocytosis mechanism of nano metal-organic frameworks for drug delivery. Adv Healthc Mater. 5(17):2261–70

    CAS  PubMed  Google Scholar 

  • Orellana-Tavra C, Haddad S, Marshall RJ, Abánades Lázaro I, Boix G, Imaz I et al (2017) Tuning the endocytosis mechanism of Zr-based metal-organic frameworks through linker functionalization. ACS Appl Mater Interfaces. 9(41):35516–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana-Tavra C, Köppen M, Li A, Stock N, Fairen-Jimenez D (2020) Biocompatible, crystalline, and amorphous bismuth-based metal-organic frameworks for drug delivery. ACS Appl Mater Interfaces. 12(5):5633–41

    CAS  PubMed  Google Scholar 

  • Pan S, Huang G, Sun Z, Chen X, Xiang X, Jiang W et al (2023) X-ray-responsive zeolitic imidazolate framework-capped nanotherapeutics for cervical cancer-targeting radiosensitization. Adv Funct Mater 33(13):2213364

  • Pandit P, Bhagat S, Rananaware P, Mohanta Z, Kumar M, Tiwari V et al (2022a) Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells. Microporous Mesoporous Mater 340:112008

  • Pandit P, Bhagat S, Rananaware P, Mohanta Z, Kumar M, Tiwari V et al (2022b) Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells. Microporous Mesoporous Mater. 340:15

    Google Scholar 

  • Park H, Kim DM, Baek SE, Kim KS, Kim DE (2015) Comparison of drug delivery efficiency between doxorubicin intercalated in RNA aptamer and one encapsulated in RNA aptamer-conjugated liposome. Bull Korean Chem Soc 36(10):2494–500

    CAS  Google Scholar 

  • Park T, Lee S, Amatya R, Cheong H, Moon C, Kwak HD et al (2020) ICG-loaded pegylated BSA-silver nanoparticles for effective photothermal cancer therapy. Int J Nanomed. 15:5459–71

    CAS  Google Scholar 

  • Park T, Amatya R, Min KA, Shin MC (2023) Liposomal iron oxide nanoparticles loaded with doxorubicin for combined chemo-photothermal cancer therapy. Pharmaceutics 15(1):292

  • Parvathaneni V, Shukla SK, Gupta V (2023) Development and characterization of folic acid-conjugated amodiaquine-loaded nanoparticles-efficacy in cancer treatment. Pharmaceutics 15(3):1001

  • Paulmurugan R, Oronsky B, Brouse CF, Reid T, Knox S, Scicinski J (2013) Real time dynamic imaging and current targeted therapies in the war on cancer: a new paradigm. Theranostics. 3(6):437–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng F, Qiu L, Chai R, Meng F, Yan C, Chen Y et al (2018) Conjugated polymer-based nanoparticles for cancer cell-targeted and image-guided photodynamic therapy. Macromol Chem Phys 219(4):1700440

  • Pinhassi RI, Assaraf YG, Farber S, Stark M, Ickowicz D, Drori S et al (2010) Arabinogalactan-folic acid-drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells. Biomacromolecules. 11(1):294–303

    CAS  PubMed  Google Scholar 

  • Qi X, Wan Z, Jiang B, Ouyang Y, Feng W, Zhu H et al (2022) Inducing ferroptosis has the potential to overcome therapy resistance in breast cancer. Front Immunol 13:1038225

  • Qin YT, Peng H, He XW, Li WY, Zhang YK (2019) pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy. Acs Appl Mater Interfaces. 11(37):34268–81

    CAS  PubMed  Google Scholar 

  • Rajab Asadi F, Hamzavi SF, Shahverdizadeh GH, Ilkhchi MG, Hosseinzadeh-Khanmiri R (2018) Dipeptide-functionalized MIL-101(Fe) as efficient material for ibuprofen delivery. Appl Organomet Chem 32(12):e4552

  • Rana A, Bhatnagar S (2021) Advancements in folate receptor targeting for anti-cancer therapy: a small molecule-drug conjugate approach. Bioorg Chem 112:104946

  • Ray Chowdhuri A, Bhattacharya D, Sahu SK (2016) Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 45(7):2963–73

    CAS  PubMed  Google Scholar 

  • Reddy JA, Allagadda VM, Leamon CP (2005) Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol. 6(2):131–50

    CAS  PubMed  Google Scholar 

  • Ren F, Yang B, Cai J, Jiang Y, Xu J, Wang S (2014) Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. J Hazard Mater. 271:283–91

    CAS  PubMed  Google Scholar 

  • Reshmi R, Jiju KR, Suma S, Nair AS (2023) Folic acid grafted aminated zeolitic imidazolate framework (ZIF-8) as pH responsive drug carrier for targeted delivery of curcumin. J Drug Deliv Sci Technol 79:104098

  • Rizvi SFA, Mu S, Wang Y, Li S, Zhang H (2020) Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomedicine and Pharmacotherapy 127:110179

  • Sabaghi V, Davar F, Rashidi-Ranjbar P, Abdi A (2023) Synthesis and evaluation of pH-responsive mesoporous ZnO/PEG/DOX nanocomposite based on Zn-HKUST-1 MOF nanostructure for targeted drug delivery. J Porous Mater. 30(1):201–9

    CAS  Google Scholar 

  • Safdar Ali R, Meng H, Li Z (2021) Zinc-based metal-organic frameworks in drug delivery, cell imaging, and sensing. Molecules 27(1):100

  • Sagan S, Bechara C, Burlina F (2015) Study of CPP mechanisms by mass spectrometry. Methods Mol Biol 1324:107–21

    PubMed  Google Scholar 

  • Salimi-Jeda A, Ghabeshi S, Gol Mohammad pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F et al (2022) Autophagy modulation and cancer combination therapy: a smart approach in cancer therapy. Cancer Treat Res Commun 30:100512

  • Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol. 142(11):2217–29

    CAS  PubMed  Google Scholar 

  • San HHM, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Nalinratana N, Suksamrarn A et al (2023) Folic acid-grafted chitosan-alginate nanocapsules as effective targeted nanocarriers for delivery of turmeric oil for breast cancer therapy. Pharmaceutics 15(1):110

  • Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H et al (2022) Recent advances in glioblastoma multiforme therapy: a focus on autophagy regulation. Biomed Pharmacother 155:113740

    CAS  PubMed  Google Scholar 

  • Sann EE, Pan Y, Gao Z, Zhan S, Xia F (2018) Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep Purif Technol. 206:186–91

    CAS  Google Scholar 

  • Sarkar P, Ghosh S, Sarkar K (2021) Folic acid based carbon dot functionalized stearic acid-g-polyethyleneimine amphiphilic nanomicelle: targeted drug delivery and imaging for triple negative breast cancer. Colloids Surf B Biointerfaces 197:111382

  • Scaranti M, Cojocaru E, Banerjee S, Banerji U (2020) Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 17(6):349–59

    PubMed  Google Scholar 

  • Schwöppe C, Hintelmann H, Mesters RM, Berdel WE, König S (2012) Using native gel electrophoresis or isoelectric focusing as experimental “Clock” for the (ISO)aspartate formation process of TTF-NGR fusion proteins. Biomacromolecular mass spectrometry 2:285–93

  • Seebacher NA, Stacy AE, Porter GM, Merlot AM (2019) Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 38(1):1–39

  • Sega EI, Low PS (2008) Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 27(4):655–64

    CAS  PubMed  Google Scholar 

  • Shakeri-Zadeh A, Rezaeyan A, Sarikhani A, Ghaffari H, Samadian H, Khademi S et al (2021) Folate receptor-targeted nanoprobes for molecular imaging of cancer: friend or foe? Nano Today 39:101173

  • Shang L, Zhou X, Zhang J, Shi Y, Zhong L (2021) Metal nanoparticles for photodynamic therapy: a potential treatment for breast cancer. Molecules 26(21):6532

  • Shao J, Liang R, Ding D, Zheng X, Zhu X, Hu S et al (2021) A smart multifunctional nanoparticle for enhanced near-infrared image-guided photothermal therapy against gastric cancer. Int J Nanomed. 16:2897–915

    Google Scholar 

  • Sharma S, Chand P (2023) Electrochemical behavior of solvothermally grown ZIF-8 as electrode material for supercapacitor applications. Mater Today Proc. 76:125–31

    CAS  Google Scholar 

  • Shi Z, Chen X, Zhang L, Ding S, Wang X, Lei Q et al (2018) FA-PEG decorated MOF nanoparticles as a targeted drug delivery system for controlled release of an autophagy inhibitor. Biomater Sci. 6(10):2582–90

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Sanna V (2016) Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol Nutr Food Res. 60(6):1330–41

    CAS  PubMed  Google Scholar 

  • Sinai Kunde S, Wairkar S (2022) Folic acid anchored urchin-like raloxifene nanoparticles for receptor targeting in breast cancer: synthesis, optimisation and in vitro biological evaluation. Int J Pharm 623:121926

  • Singh R, Kumar B, Sahu RK, Kumari S, Jha CB, Singh N et al (2021) Development of a pH-sensitive functionalized metal organic framework: in vitro study for simultaneous delivery of doxorubicin and cyclophosphamide in breast cancer. RSC Adv. 11(53):33723–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Geetanjali (2018) Metal organic frameworks for drug delivery. Applications of nanocomposite materials in drug delivery: Elsevier, pp 605-17. https://doi.org/10.1016/B978-0-12-813741-3.00026-1

  • Soliman MM, Sakr TM, Rashed HM, Hamed AA, Abd El-Rehim HA (2021) Polyethylene oxide–polyacrylic acid–folic acid (PEO-PAAc) nanogel as a 99mTc targeting receptor for cancer diagnostic imaging. J Label Compd Radiopharm 64(14):534–47

    CAS  Google Scholar 

  • Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X (2018) Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials 8(11):907

  • Song H, Liu B, Dong B, Xu J, Zhou H, Na S et al (2021) Exosome-based delivery of natural products in cancer therapy. Front Cell Dev Biol 9:650426

  • Souza FF, Smith A, Araujo C, Jagannathan J, Johnston C, O’Regan K et al (2014) New targeted molecular therapies for cancer: radiological response in intrathoracic malignancies and cardiopulmonary toxicity: what the radiologist needs to know Interventional radiology. Cancer Imaging 14(1):1–13

  • Su Z, Dong S, Zhao SC, Liu K, Tan Y, Jiang X et al (2021) Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updates 58:100777

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 41(2):147–62

    CAS  PubMed  Google Scholar 

  • Sun W, Li H, Li H, Li S, Cao X (2019) Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation. Chem Eng J. 360:645–53

    CAS  Google Scholar 

  • Sutrisna PD, Prasetya N, Himma NF, Wenten IG (2020) A mini-review and recent outlooks on the synthesis and applications of zeolite imidazolate framework-8 (ZIF-8) membranes on polymeric substrate. J Chem Technol Biotechnol. 95(11):2767–74

    CAS  Google Scholar 

  • Tada S, Wang W, Li Z, Uzawa T, Iro Y (2013) Creation of novel functional peptides by mimicking Darwinian evolution. Kobunshi Ronbunshu 70(7):317–25

    CAS  Google Scholar 

  • Tagde P, Kulkarni GT, Mishra DK, Kesharwani P (2020) Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol 56:101613

  • Tamura T, Inoue M, Yoshimitsu Y, Hashimoto I, Ohashi N, Tsumura K et al (2022) Chemical synthesis and cell-free expression of thiazoline ring-bridged cyclic peptides and their properties on biomembrane permeability. Bull Chem Soc Japan 95(2):359–66

    CAS  Google Scholar 

  • Tanasova M, Begoyan VV, Weseliński ŁJ (2018) Targeting sugar uptake and metabolism for cancer identification and therapy: an overview. Curr Top Med Chem. 18(6):467–83

    CAS  PubMed  Google Scholar 

  • Tavana E, Mollazadeh H, Mohtashami E, Modaresi SMS, Hosseini A, Sabri H et al (2020) Quercetin: a promising phytochemical for the treatment of glioblastoma multiforme. BioFactors. 46(3):356–66

    CAS  PubMed  Google Scholar 

  • Teplensky MH, Fantham M, Li P, Wang TC, Mehta JP, Young LJ et al (2017) Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J Am Chem Soc. 139(22):7522–32

    CAS  PubMed  Google Scholar 

  • Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W (2019) Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol 7:324

  • Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J et al (2022) Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 15(1):1–40

  • Tian M, Li C, Ahmad N, Luo Z, Zhang Y, Cheng J et al (2023) Alternative strategy for purification of acteoside with hypoglycemic activity from Rehmannia glutinosa Libosch. leaves: preparation of ZIF-8 @D110 resin and its application. Ind Crops Prod 193:116193

  • Trushina DB, Sapach AY, Burachevskaia OA, Medvedev PV, Khmelenin DN, Borodina TN et al (2022) Doxorubicin-loaded core–shell UiO-66@SiO2 metal–organic frameworks for targeted cellular uptake and cancer treatment. Pharmaceutics 14(7):1325

  • Vadevoo SMP, Gurung S, Khan F, Haque ME, Gunassekaran GR, Chi L et al (2019) Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch Pharmacal Res. 42(2):150–8

    CAS  Google Scholar 

  • Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR et al (2023) Application of nano-radiosensitizers in combination cancer therapy. Bioeng Trans Med 8(3):e10498

  • Vazquez DS, Schilbert HM, Dodero VI (2021) Molecular and structural parallels between gluten pathogenic peptides and bacterial-derived proteins by bioinformatics analysis. Int J Mol Sci 22(17):9278

  • Venkatas J, Daniels A, Singh M (2022) The potential of curcumin-capped nanoparticle synthesis in cancer therapy: a green synthesis approach. Nanomaterials 12(18):3201

  • Vlahov IR, Vite GD, Kleindl PJ, Wang Y, Santhapuram HKR, You F et al (2010) Regioselective synthesis of folate receptor-targeted agents derived from epothilone analogs and folic acid. Bioorg Med Chem Lett. 20(15):4578–81

    CAS  PubMed  Google Scholar 

  • Vlashi E, Sturgis JE, Thomas M, Low PS (2021) Real time, noninvasive imaging and quantitation of the accumulation of ligand-targeted drugs into receptor-expressing solid tumors. Adv Civ Eng 6(6):1868–75

  • Voelkl S, Moore TV, Rehli M, Nishimura MI, MacKensen A, Fischer K (2009) Characterization of MHC class-I restricted TCRαβ+ CD4- CD8- double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 58(5):709–18

    CAS  PubMed  Google Scholar 

  • Wallace-Povirk A, Hou Z, Nayeen MJ, Gangjee A, Matherly LH (2022) Folate transport and one-carbon metabolism in targeted therapies of epithelial ovarian cancer. Cancers 14(1):191

  • Wang L, Zheng M, Xie Z (2018) Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J Mater Chem B. 6(5):707–17

    CAS  PubMed  Google Scholar 

  • Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z et al (2019) Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl Mater Interfaces. 11(12):11167–76

    CAS  PubMed  Google Scholar 

  • Wang Q, Sun Y, Li S, Zhang P, Yao Q (2020a) Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 10(62):37600–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ji Y, Shi J, Wang L (2020b) NIR-driven water splitting H2 production nanoplatform for H2-mediated cascade-amplifying synergetic cancer therapy. ACS Appl Mater Interfaces. 12(21):23677–88

    CAS  PubMed  Google Scholar 

  • Wang QX, Chen X, Li ZL, Gong YC, Xiong XY (2022a) Transferrin/folate dual-targeting Pluronic F127/poly(lactic acid) polymersomes for effective anticancer drug delivery. J Biomater Sci Polym Ed. 33(9):1140–56

    CAS  PubMed  Google Scholar 

  • Wang L, Chen X, Yan C (2022b) Ferroptosis: an emerging therapeutic opportunity for cancer. Genes Dis. 9(2):334–46

    PubMed  Google Scholar 

  • Ward CM (2000) Folate-targeted non-viral DNA vectors for cancer gene therapy. Curr Opin Mol Ther. 2(2):182–7

    CAS  PubMed  Google Scholar 

  • Watanabe K, Kaneko M, Maitani Y (2012) Functional coating of liposomes using a folate- polymer conjugate to target folate receptors. Int J Nanomedicine. 7:3679–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Zhou Y, Wang R, Wang J, Chen Z (2022) Aptamers as smart ligands for targeted drug delivery in cancer therapy. Pharmaceutics 14(12):2561

  • Wrana F, Dötzer K, Prüfer M, Werner J, Mayer B (2022) High dual expression of the biomarkers CD44v6/α2β1 and CD44v6/PD-L1 indicate early recurrence after colorectal hepatic metastasectomy. Cancers 14(8):1939

  • Wu Q, Ou H, Shang Y, Zhang X, Wu J, Fan F (2021) Nanoscale formulations: incorporating curcumin into combination strategies for the treatment of lung cancer. Drug Des Dev Ther. 15:2695–709

    Google Scholar 

  • Wu Q, Sharma D (2023) Autophagy and breast cancer: connected in growth, progression, and therapy. Cells 12(8):1156

  • Xie H, Liu X, Huang Z, Xu L, Bai R, He F et al (2022) Nanoscale zeolitic imidazolate framework (ZIF)–8 in cancer theranostics: current challenges and prospects. Cancers 14(16):3935

  • Xiong L, Teng JLL, Botelho MG, Lo RC, Lau SKP, Woo PCY (2016) Arginine metabolism in bacterial pathogenesis and cancer therapy. Int J Mol Sci 17(3):363

  • Xu W, Lou Y, Chen W, Kang Y (2020) Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Tech. 65(2):229–36

    CAS  Google Scholar 

  • Xu W, Lou Y, Chen W, Kang Y (2019) Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Eng/ Biomed Tech 65(2):229–36

  • Yan J, Liu C, Wu Q, Zhou J, Xu X, Zhang L et al (2020) Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Anal Chem. 92(16):11453–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SJ, Lin FH, Tsai KC, Wei MF, Tsai HM, Wong JM et al (2010) Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjugate Chem. 21(4):679–89

    CAS  Google Scholar 

  • Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W et al (2014) PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials. 35(14):4368–81

    CAS  PubMed  Google Scholar 

  • Yang D, Deng F, Liu D, He B, He B, Tang X et al (2019a) The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci. 14(4):349–64

    PubMed  Google Scholar 

  • Yang J, Teng Y, Fu Y, Zhang C (2019b) Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int J Nanomed. 14:5061–71

    CAS  Google Scholar 

  • Yang J, Wang H, Liu J, Ding M, Xie X, Yang X et al (2021a) Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv. 11(6):3241–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Liu R, Xu Y, Qian L, Dai Z (2021b) Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett 13(1):1–6

  • Yang C, Jiang Y, Hao SH, Yan XY, Hong DF, Naranmandura H (2022a) Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B. 10(1):20–33

    CAS  Google Scholar 

  • Yang J, Cheng Q, Zhu CC, Huang HY, Su JB, Ni W et al (2022b) Folic acid conjugated carbon dots doped metal-organic framework materials for cell imaging. Mater Today Chem 26:101202

  • Yang S, Zhao Z, Xie Y, Lin J, Zhang B, Fan J (2022c) Engineering Bio-MOF/polydopamine as a biocompatible targeted theranostic system for synergistic multi-drug chemo-photothermal therapy. Int J Pharm 623:121912

  • Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y et al (2017) Development of antibody–drug conjugates using DDS and molecular imaging. Bioeng 4(3):78

  • Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D et al (2023) Folate receptor as a biomarker and therapeutic target in solid tumors. Curr Probl Cancer 47(1):100917

  • Yurtsever HA, Çetin AE (2021) Fabrication of ZIF-8 decorated copper doped TiO2 nanocomposite at low ZIF-8 loading for solar energy applications. Colloids Surf A Physicochem Eng Asp 625:126980

  • Zaffaroni N, Beretta GL (2021) Nanoparticles for ferroptosis therapy in cancer. Pharmaceutics 13(11):1785

  • Zeng X, Chen B, Song Y, Lin X, Zhou SF, Zhan G (2021) Fabrication of versatile hollow metal-organic framework nanoplatforms for folate-targeted and combined cancer imaging and therapy. ACS Appl Bio Mater. 4(8):6417–29

    CAS  PubMed  Google Scholar 

  • Zeng H, Xia C, Zhao B, Zhu M, Zhang H, Zhang D et al (2022) Folic acid–functionalized metal-organic framework nanoparticles as drug carriers improved bufalin antitumor activity against breast cancer. Front Pharmacol 12:747992

    PubMed  PubMed Central  Google Scholar 

  • Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee SJ et al (2017a) Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Front Chem Sci Eng 11(4):529–36

    CAS  Google Scholar 

  • Zhang H, Jiang W, Liu R, Zhang J, Zhang D, Li Z et al (2017b) Rational design of metal organic framework nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl Mater Interfaces. 9(23):19687–97

    CAS  PubMed  Google Scholar 

  • Zhang DY, Zheng Y, Zhang H, Yang GG, Tan CP, He L et al (2018) Folate receptor-targeted theranostic IrS: X nanoparticles for multimodal imaging-guided combined chemo-photothermal therapy. Nanoscale. 10(47):22252–62

    CAS  PubMed  Google Scholar 

  • Zhang LP, Mo CE, Huang YP, Liu ZS (2019a) Preparation of liquid crystalline molecularly imprinted polymer coated metal organic framework for capecitabine delivery. Part Part Syst Charact 36(1):1800355

  • Zhang X, Wu J, Williams GR, Niu S, Qian Q, Zhu LM (2019b) Functionalized MoS 2 -nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids Surf B Biointerfaces. 173:101–8

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F et al (2016) Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 6(1):21225

  • Zhang N, Gao Y, Xu X, Bao T, Wang S (2021a) Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal anti-inflammatory drugs in food samples. Food Chem 355:129623

  • Zhang X, Li G, Chen G, Wu D, Wu Y, James TD (2021b) Enzyme mimics for engineered biomimetic cascade nanoreactors: mechanism, applications, and prospects. Adv Funct Mater 31(50):2106139

  • Zhang X, Yang S, Wang Q, Ye W, Liu S, Wang X et al (2021c) Tailored theranostic nanoparticles cause efficient ferroptosis in head and neck squamous cell carcinoma through a reactive oxygen species “butterfly effect”. Chem Eng J 423:130083

  • Zhang L, Zhu Y, Zhang J, Zhang L, Chen L (2022) Inhibiting cytoprotective autophagy in cancer therapy: an update on pharmacological small-molecule compounds. Front Pharmacol 13:966012

  • Zhao R, Goldman ID (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Asp Med. 34(2–3):373–85

    Google Scholar 

  • Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 5(3):309–19

    CAS  PubMed  Google Scholar 

  • Zhao MD, Li JQ, Chen FY, Dong W, Wen LJ, Fei WD et al (2019) Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomed. 14:9453–67

    CAS  Google Scholar 

  • Zhong Y, Meng F, Deng C, Zhong Z (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules. 15(6):1955–69

    CAS  PubMed  Google Scholar 

  • Zhou XB, Qiu Z, Liu XX, Zhang J, He YY, Wang XM et al (2012) The folate receptor α and ovarian cancer. Chin J Pharm Biotechnol. 19(5):458–61

    CAS  Google Scholar 

  • Zhou H, Liu Z, Zhang Z, Pandey NK, Amador E, Nguyen W et al (2023) Copper-cysteamine nanoparticle-mediated microwave dynamic therapy improves cancer treatment with induction of ferroptosis. Bioact Mater. 24:322–30

    CAS  PubMed  Google Scholar 

  • Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B et al (2016) Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 23(6):1980–91

    CAS  PubMed  Google Scholar 

  • Zhu Y, Li W, Zhao X, Zhou Z, Wang Y, Cheng Y et al (2017) Hyaluronic acid-encapsulated platinum nanoparticles for targeted photothermal therapy of breast cancer. J Biomed Nanotechnol. 13(11):1457–67

    CAS  PubMed  Google Scholar 

  • Żuk M, Gawęda W, Majkowska-Pilip A, Osial M, Wolski M, Bilewicz A et al (2021) Hybrid radiobioconjugated superparamagnetic iron oxide-based nanoparticles for multimodal cancer therapy. Pharmaceutics 13(11):1843

  • Zuo S, Yu J, Pan H, Lu L (2020) Novel insights on targeting ferroptosis in cancer therapy. Biomarker Res 8(1):1–1

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Mahsa Akbari Oryani, Shamim Nosrati, Ali Mehri, and Alireza Hashemzadeh, and all authors commented on previous versions of the manuscript. The chemical analysis of this study was also conducted by Alireza Hashemadeh. Finally, all authors read and approved the final manuscript. Hossein Javid and Mehdi Karimi-Shahri were responsible for coordinating the authors and finalizing and submitting the paper. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Hossein Javid or Mehdi Karimi-Shahri.

Ethics declarations

Ethics approval

Ethics approval for this type of article (A review) is not applicable.

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oryani, M.A., Nosrati, S., Javid, H. et al. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1377–1404 (2024). https://doi.org/10.1007/s00210-023-02707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02707-y

Keywords

Navigation