Skip to main content
Log in

Paroxetine’s effect on the proinflammatory cytokine stimulation and intracellular signaling pathways in J774.2 cells

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Paroxetine is extensively utilized in the management of depressive and anxious conditions. Paroxetine works by increasing serotonin levels in nerve cells in the brain. However, limited information is available regarding the direct effects of paroxetine on macrophage cells. Macrophages are a type of leukocytes involved in the body’s immune response, playing a crucial role in combating infections. The impact of paroxetine on macrophages has been explored in research, although a comprehensive understanding is still pending. This study aimed to research the potential of administering paroxetine to J774.2 macrophage cells to stimulate the release of GM-CSF, TNF-α, IL-12p40, and IL-6 cytokines. Additionally, we examined the mechanisms of action of paroxetine on the p38 signaling pathway, which is involved in cytokine production, and the PI3K pathway, which is an important mechanism in intracellular signaling. Our findings revealed that paroxetine induced an inflammatory response in macrophages by promoting cytokine synthesis in a non-lipopolysaccharide (LPS) environment. We observed that paroxetine triggered the inflammatory response through the PI3K signaling pathway while suppressing the p38 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abe S, Hori T, Suzuki T, Baba A, Shiraishi H, Yamamoto T (1999) Effects of chronic administration of interferon α A/D on serotonergic receptors in rat brain. Neurochem Res 24:359–363

    Article  CAS  PubMed  Google Scholar 

  • Canatar C, Türkben H, Efeoglu C, Sari H, Karasu E, Nural Y, Ayaz F (2023) Anti-inflammatory potential of 1, 4-naphthoquinone acyl thiourea hybrids on lipopolysaccharide-activated mammalian macrophages, and their acid dissociation constants. ChemistrySelect 8(20):e202301258

    Article  CAS  Google Scholar 

  • Chen CY, Yeh YW, Kuo SC, Liang CS, Ho PS, Huang CC, ... Huang SY (2018) Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology 87:108–118

  • Dantzer R, O’connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiat 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  • Durairaj H, Steury MD, Parameswaran N (2015) Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages. Int Immunopharmacol 25(2):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC (2011) Interleukin-23: a key cytokine in inflammatory diseases. Ann Med 43(7):503–511

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K pathway in human disease. Cell 170(4):605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JA (2020) GM-CSF in inflammation. J Exp Med 217(1):e20190945. https://doi.org/10.1084/jem.20190945

    Article  CAS  PubMed  Google Scholar 

  • Henderson DC, Edwards RG, Weston BJ, Dewdney JM (1988) Immunological studies on paroxetine, a novel anti-depressant drug. Int J Immunopharmacol 10(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Hernández ME, Mendieta D, Martínez-Fong D, Loría F, Moreno J, Estrada I, Pavón L (2008) Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur Neuropsychopharmacol 18(12):917–924

    Article  PubMed  Google Scholar 

  • Herr N, Bode C, Duerschmied D (2017) The effects of serotonin in immune cells. Front Cardiovasc Med 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho PS, Yeh YW, Huang SY, Liang CS (2015) A shift toward T helper 2 responses and an increase in modulators of innate immunity in depressed patients treated with escitalopram. Psychoneuroendocrinology 53:246–255

    Article  CAS  PubMed  Google Scholar 

  • Hrdina PD, Bakish D, Chudzik J, Ravindran ARUN, Lapierre YD (1995) Serotonergic markers in platelets of patients with major depression: upregulation of 5-HT2 receptors. J Psychiatry Neurosci 20(1):11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar YA, ... Kaye AM (2021) Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurol Int 13(3):387–401

  • Kubera M, Maes M, Kenis G, Kim YK, Lasoń W (2005) Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor α and interleukin-6. Psychiatry Res 134(3):251–258

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Kim YK (2006) The role of IL-12 and TGF-β1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 6(8):1298–1304

    Article  CAS  PubMed  Google Scholar 

  • Liu RP, Zou M, Wang JY, Zhu JJ, Lai JM, Zhou LL, Zhu JH (2014) Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation 11:1–11

  • Ma Y, Liang X, Li C, Li R, Tong X, Zhang R, ... Fu J (2022) 5-HT2A receptor and 5-HT degradation play a crucial role in atherosclerosis by modulating macrophage foam cell formation, vascular endothelial cell inflammation, and hepatic steatosis. J Atheroscler Thromb 29(3):322–336

  • Mal X, Trinchieri G (2001) Regulation of interleukin-12 production in antigen-presenting cells. Adv Immunol 79:55–92

    Article  Google Scholar 

  • Manikowska K, Mikolajczak PL, Bobkiewicz-Kozlowska T, Modzelewska J (2013) The interaction between paroxetine and some cytokines in the animal model of depression. Acta Neurobiol Exp 73

  • Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci 122(4):143–159

    Article  CAS  Google Scholar 

  • Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiat 65(9):732–741

    Article  CAS  PubMed  Google Scholar 

  • Moyano DF, Liu Y, Ayaz F, Hou S, Puangploy P, Duncan B, Rotello VM (2016) Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated in vitro and in vivo murine model systems. Chem 1(2):320–327

  • Ning L, Wang X, Xuan B, Ma Y, Yan Y, Gao Z, ... Wang Z (2023) Identification and investigation of depression-related molecular subtypes in inflammatory bowel disease and the anti-inflammatory mechanisms of paroxetine. Front Immunol 14:1145070

  • Önal HT, Yetkin D, Ayaz F (2022) Immunostimulatory activity of fluoxetine in macrophages via regulation of the PI3K and P38 signaling pathways. Immunol Res 71(3):413–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Önal HT, Yetkin D, Ayaz F (2023) Escitalopram’s inflammatory effect on the mammalian macrophages and its intracellular mechanism of action. Prog Neuropsychopharmacol Biol Psychiatry 125:110762

    Article  PubMed  Google Scholar 

  • Öztürk AB, Öztürk NC, Ayaz F (2023) Conditioned media of mouse macrophages modulates neuronal dynamics in mouse hippocampal cells. Int Immunopharmacol 114:109548

    Article  Google Scholar 

  • Pae CU, Masand PS, Marks DM, Krulewicz S, Peindl K, Mannelli P, Patkar AA (2009) History of depressive and/or anxiety disorders as a predictor of treatment response: A post hoc analysis of a 12-week, randomized, double-blind, placebo-controlled trial of paroxetine controlled release in patients with fibromyalgia. Prog Neuropsychopharmacol Biol Psychiatry 33(6):996–1002

    Article  CAS  PubMed  Google Scholar 

  • Page IH (1954) Serotonin (5-hydroxytryptamine). Physiol Rev 34(3):563–588

    Article  CAS  PubMed  Google Scholar 

  • Rahimian R, Wakid M, O’Leary LA, Mechawar N (2021) The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 131:1–29

    Article  PubMed  Google Scholar 

  • Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, Burnet PW (2016) Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav Immun 52:120–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors: serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51(3):215–235

    Article  CAS  PubMed  Google Scholar 

  • Sternberg EM, Trial J, Parker CW (1986) Effect of serotonin on murine macrophages: suppression of Ia expression by serotonin and its reversal by 5-HT2 serotonergic receptor antagonists. J Immunol (Baltimore, Md.: 1950) 137(1):276–282

  • Su F, Yi H, Xu L, Zhang Z (2015) Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience 294:60–68

    Article  CAS  PubMed  Google Scholar 

  • Tang SW, Helmeste D (2008) Paroxetine. Expert Opin Pharmacother 9(5):787–794

    Article  CAS  PubMed  Google Scholar 

  • Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 26(3):469–479

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang L, Wu L, Zhang M, Hu S, Wang R, Wei W (2017) Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Sci Rep 7(1):45364

  • Xu D, Sun Y, Wang C, Wang H, Wang Y, Zhao W, Jiang B (2018) Hippocampal mTOR signaling is required for the antidepressant effects of paroxetine. Neuropharmacology 128:181–195

  • Yasui T, Yamada M, Uemura H, Ueno SI, Numata S, Ohmori T, Irahara M (2009) Changes in circulating cytokine levels in midlife women with psychological symptoms with selective serotonin reuptake inhibitor and Japanese traditional medicine. Maturitas 62(2):146–152

  • Yetkin D, Yılmaz İA, Ayaz F (2023) Anti-inflammatory activity of bupropion through immunomodulation of the macrophages. Naunyn-Schmiedeberg’s Arch Pharmacol: 1–7

  • Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen M, Liu Y, Dong X, Zhang C, Jiang H, Chen X (2020) Paroxetine combined with fluorouracil plays a therapeutic role in mouse models of colorectal cancer with depression through inhibiting IL-22 expression to regulate the MAPK signaling pathway. Exp Ther Med 20(6):1–1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HTO and FA conceived and designed research. HTO, FA, and DY conducted experiments related to cell culture. HTO and FA analyzed the data. HTO wrote the manuscript. All authors read and approved the manuscript and all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Harika Topal Önal or Furkan Ayaz.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Önal, H.T., Yetkin, D. & Ayaz, F. Paroxetine’s effect on the proinflammatory cytokine stimulation and intracellular signaling pathways in J774.2 cells. Naunyn-Schmiedeberg's Arch Pharmacol 396, 3327–3335 (2023). https://doi.org/10.1007/s00210-023-02669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02669-1

Keywords

Navigation