Skip to main content

Advertisement

Log in

The advancing of polymeric core–shell ZnO nanocomposites containing 5-fluorouracil for improving anticancer activity in colorectal cancer

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The study investigated the use of 5-fluorouracil-loaded ZnO nanocomposites (5-FU/Gd-ZnO NCs) as a potential treatment for cancer. 5-FU is a commonly used drug for cancer treatment but has undesirable side effects. The materials were characterized using various techniques, including PXRD, FTIR, FESEM, TEM, DLS, £-potential, and AFM. The data showed that the nanocomposites had a plate-like agglomeration with particle diameters ranging from 317.6 to 120.1 nm. The IC50 value of 5-FU-ZnO, which inhibits cell growth, was found to be 1.85 ppm. The effects of 5-FU-ZnO on inflammatory markers were also examined. While 5-FU increased the levels of TNF-a and IL-1b, the nanocomposites were able to reduce these levels. Additionally, the 5-FU/Gd-ZnO-NCs group showed an increase in thiol levels and a decrease in catalase and superoxide dismutase levels. Flow cytometry results showed that 5-FU, ZnO-NCs, and 5-FU/Gd-ZnO-NCs did not have any additive or synergistic effects on the suppression or eradication of cancer cells. In vivo, experiments showed that the 5-FU/Gd-ZnO NCs had similar necrotic characteristics and reduced fibrosis and collagen deposition compared to the free medication. The nanocomposites also exhibited higher antioxidative activity and lower inflammatory responses compared to the 5-FU group. It was shown that 5-FU/Gd-ZnO-NCs successfully inhibit cell proliferation. The in vivo results were comparable to those obtained with free 5-FU, suggesting the potential of these nanocomposites as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahmadpour MR, Yousefi M, Rakhshandeh H, Darroudi M, Mousavi SH, Soukhtanloo M, Sabouri Z, Askari VR, Hashemzadeh A, Manjiri MA, Malihe 7-Motavasselian (2023) Biosynthesis of gold nanoparticles using quince seed water extract and investigation of their anticancer effect against cancer cell lines. IEEE Trans Nanobioscience 28. https://doi.org/10.1109/TNB.2023.3287805

  • Al-Ajmi MF, Hussain A, Ahmed F (2016) Novel synthesis of ZnO nanoparticles and their enhanced anticancer activity: role of ZnO as a drug carrier. Ceram Int 42:4462–4469

    Article  CAS  Google Scholar 

  • Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R et al (2018) Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res 137:115–170

    Article  PubMed  CAS  Google Scholar 

  • Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, Bray F (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335–349

    Article  PubMed  Google Scholar 

  • Asgharzadeh F, Hashemzadeh A, Yaghoubi A, Avan A, Nazari SE, Soleimanpour S et al (2021) Therapeutic effects of silver nanoparticle containing sulfasalazine on DSS-induced colitis model. J Drug Deliv Sci Technol 61:102133

    Article  CAS  Google Scholar 

  • Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V (2019) Bio-inspired synthesis of chitosan/copper oxide nanocomposite using rutin and their anti-proliferative activity in human lung cancer cells. Int J Biol Macromol 141:476–483

    Article  PubMed  CAS  Google Scholar 

  • Bleiberg H (1998) Oxaliplatin (L-OHP): a new reality in colorectal cancer. Br J Cancer 77:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cancer IAfRo (2017) GLOBOCAN 2012 v1. 0, Cancer incidence and mortality worldwide: IARC cancer base no. 11. Lyon Available via http://www.globocaniarcfr. Accessed 2004-2018

  • Casale J, Patel P (2023) Fluorouracil. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Chalabi-Dchar M, Fenouil T, Machon C, Vincent A, Catez F, Marcel V et al (2021) A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer 3:zcab032

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen D, Liu C, Tang J, Luo L, Yu G (2019) Fluorescent porous organic polymers. Polym Chem 10:1168–1181

    Article  CAS  Google Scholar 

  • Cvitkovic E, Bekradda M (1999) Oxaliplatin: a new therapeutic option in colorectal cancer. Semin Oncol 26(6):647–662

    PubMed  CAS  Google Scholar 

  • De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P et al (2015) Genetics, diagnosis and management of colorectal cancer. Oncol Rep 34:1087–1096

    Article  PubMed  Google Scholar 

  • Ferrone E, Araneo R, Notargiacomo A, Pea M, Rinaldi A (2019) ZnO Nanostructures and electrospun ZnO–polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials 9:1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fluorouracil (2016) In: Aronson JK (ed) Meyler’s side effects of drugs (sixteenth edition). Elsevier, Oxford, p. 382–94

  • Gao X, Grignon DJ, Chbihi T, Zacharek A, Chen YQ, Sakr W et al (1995) Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urol 46:227–237

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Yu Z, Das M, Huang L (2020) Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano 14:5075–5089

    Article  PubMed  CAS  Google Scholar 

  • Gür T, Demir H, Kotan MC (2011) Tumor markers and biochemical parameters in colon cancer patients before and after chemotherapy. Asian Pac J Cancer Prev 12:3147–3150

    PubMed  Google Scholar 

  • Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R et al (2021a) When a metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B

  • Hashemzadeh A, Amerizadeh F, Asgharzadeh F, Darroudi M, Avan A, Hassanian SM et al (2021b) Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH2. Toxicol Appl Pharmacol 423:115573

    Article  PubMed  CAS  Google Scholar 

  • Hashemzadeh A, Drummen GPC, Avan Amir, Darroudi Majid, Khazaei M, Khajavian R, Rangrazif A, Mirzaei M (2021c) When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 9(19):3967–3982. https://doi.org/10.1039/D1TB00155H

    Article  PubMed  CAS  Google Scholar 

  • Hashemzadeh A, Amerizadeh F, Asgharzadeh F, Drummen GP, Hassanian SM, Landarani M et al (2022a) Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: in vitro studies. J Cluster Sci 33:2345–2361

    Article  CAS  Google Scholar 

  • Hashemzadeh A, Asgharzadeh F, Yaghoubi A, Nazari SE, Hassanian SM, Avan A et al (2022b) Sulfasalazine colon-specific drug delivery by selenium nanoparticle. J Trace Elem Min 2:100012

    Article  Google Scholar 

  • Hatamluyi B, Hashemzadeh A, Darroudi M (2020) A novel molecularly imprinted polymer decorated by CQDs@ HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of oxaliplatin in biological samples. Sens Actuators B Chem 307:127614

    Article  CAS  Google Scholar 

  • Holm M, Saraswat M, Joenväärä S, Ristimäki A, Haglund C, Renkonen R (2018) Colorectal cancer patients with different C-reactive protein levels and 5-year survival times can be differentiated with quantitative serum proteomics. PLoS ONE 13:e0195354

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong H, Wang F, Zhang Y, Graves SA, Eddine SBZ, Yang Y et al (2015) Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces 7:3373–3381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  PubMed  CAS  Google Scholar 

  • Ikram M, Haider A, Bibi ST, Ul-Hamid A, Haider J, Shahzadi I et al (2022) Synthesis of Al/starch co-doped in CaO nanoparticles for enhanced catalytic and antimicrobial activities: experimental and DFT approaches. RSC Adv 12:32142–32155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A et al (2023a) Assessment of catalytic, antimicrobial, and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanostructures. Int J Biol Macromol 230:123190

    Article  PubMed  CAS  Google Scholar 

  • Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A et al (2023b) Cellulose grafted poly acrylic acid doped manganese oxide nanorods as a novel platform for catalytic, antibacterial activity and molecular docking analysis. Surf Interfaces 37:102710

    Article  CAS  Google Scholar 

  • Imani M, Sharifi S, Mirzadeh H, Ziaei F (2007) Monitoring of polyethylene glycoldiacrylate-based hydrogel formation by real time NMR spectroscopy. Iranian Polymer Journal 16(1):13–20

    CAS  Google Scholar 

  • Jana T, Maji S, Pal A, Maiti R, Dolai T, Chatterjee K (2016) Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J Colloid Interface Sci 480:9–16

    Article  PubMed  CAS  Google Scholar 

  • Jeong Y, Hwang HS, Na K (2018) Theranostics and contrast agents for magnetic resonance imaging. Biomater Res 22:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimi-Shahri M, Alalikhan A, Hashemian P, Hashemzadeh A, Javid DH (2023) The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. Nanotechnology 13;34(21). https://doi.org/10.1088/1361-6528/acaca3

  • Lei G, Yang S, Cao R, Zhou P, Peng H, Peng R et al (2020) In situ preparation of amphibious ZnO quantum dots with blue fluorescence based on hyperbranched polymers and their application in bio-imaging. Polymers 12:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lupulescu A (1978) Enhancement of carcinogenesis by prostaglandins in male albino Swiss mice. J Natl Cancer Inst 61:97–106

    Article  PubMed  CAS  Google Scholar 

  • Moeen S, Ikram M, Haider A, Haider J, Ul-Hamid A, Nabgan W et al (2022) Comparative study of sonophotocatalytic, photocatalytic, and catalytic activities of magnesium and chitosan-doped tin oxide quantum dots. ACS Omega 7:46428–46439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moghimi-Dehkordi B, Safaee A, Zali MR (2008) Survival rates and prognosis of gastric cancer using an actuarial life-table method. Asian Pac J Cancer Prev 9:317–321

    PubMed  Google Scholar 

  • Mohamed Asik R, Gowdhami B, Mohamed Jaabir MS, Archunan G, Suganthy N (2019) Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater Sci Eng C Mater Biol Appl 103:109840. https://doi.org/10.1016/j.msec.2019.109840

  • Moten A, Schafer D, Ferrari M (2014) Redefining global health priorities: Improving cancer care in developing settings. J Glob Health 4(1):010304. https://doi.org/10.7189/jogh.04.010304

  • Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V et al (2023) Plant gel-mediated synthesis of gold-coated nanoceria using ferula gummosa: characterization and estimation of its cellular toxicity toward breast cancer cell lines. J Funct Biomater 14:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S et al (2021) Plant-mediated zinc oxide nanoparticles: advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics 13

  • Negin A, Parvaneh M, Azar FP, Majid R, Amir A (2023) The advance anticancer role of polymeric core-shell ZnO nanoparticles containing oxaliplatin in colorectal cancer. J Biochem Mol Toxicol 37(5):e23325. https://doi.org/10.1002/jbt.23325

  • Noei H, Qiu H, Wang Y, Löffler E, Wöll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10:7092–7097

    Article  PubMed  CAS  Google Scholar 

  • Olivier J-C (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Organization WH (2008) The global burden of disease: 2004 update: World Health Organization

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  PubMed  CAS  Google Scholar 

  • Perera VS, Chen G, Cai Q, Huang SD (2016) Nanoparticles of gadolinium-incorporated Prussian blue with PEG coating as an effective oral MRI contrast agent for gastrointestinal tract imaging. Analyst 141:2016–2022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ponnamma D, Cabibihan J-J, Rajan M, Pethaiah SS, Deshmukh K, Gogoi JP et al (2019) Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C 98:1210–1240

    Article  CAS  Google Scholar 

  • Prasanna SRV, Balaji K, Pandey S, Rana S (2019) Nanomaterials and Polymer Nanocomposites, pp123–144.  https://doi.org/10.1016/B978-0-12-814615-6.00004-7

  • Rider BJ (2007) 5 Fluorouracil. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–5

    Google Scholar 

  • Salahuddin N, Awad S (2021) Optimization delivery of 5-fluorouracil onto different morphologies of ZnO NPs: release and functional effects against colorectal cancer cell lines. Chem Pap 75:4113–4127

    Article  CAS  Google Scholar 

  • Shahzadi I, Islam M, Saeed H, Haider A, Shahzadi A, Haider J et al (2022) Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int J Biol Macromol 220:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Shahzadi A, Moeen S, Khan AD, Haider A, Haider J, Ul-Hamid A et al (2023a) La-doped CeO2 quantum dots: novel dye degrader, antibacterial activity, and in silico molecular docking analysis. ACS Omega 8:8605–8616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahzadi I, Islam M, Saeed H, Shahzadi A, Haider J, Haider A et al (2023b) Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. Int J Biol Macromol 235:123874

    Article  PubMed  CAS  Google Scholar 

  • Sharma RA, Dalgleish AG, Steward WP, O’Byrne KJ (2003) Angiogenesis and the immune response as targets for the prevention and treatment of colorectal cancer. Oncol Rep 10:1625–1631

    PubMed  CAS  Google Scholar 

  • Sharma P, Jang N-Y, Lee J-W, Park BC, Kim YK, Cho N-H (2019) Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy. Pharmaceutics 11:493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh TA, Das J, Sil PC (2020) Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Colloid Interface Sci 286:102317. https://doi.org/10.1016/j.cis.2020.102317

  • Sprangers BEN, Cosmai L, Porta C (2020) 16 - Conventional chemotherapy. In: Finkel KW, Perazella MA, Cohen EP (eds) Onconephrology. Elsevier, Philadelphia, pp 127–53.e11

    Google Scholar 

  • Sun X, Liu C, Omer AM, Lu W, Zhang S, Jiang X et al (2019) pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int J Biol Macromol 128:468–479

    Article  PubMed  CAS  Google Scholar 

  • Sundaram S, Roy SK, Ambati BK, Kompella UB (2009) Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium. FASEB J 23:3752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI (2018) Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv Nat Sci Nanosci Nanotechnol 9(1). https://doi.org/10.1088/2043-6254/aaa6f1

  • Tarudji A, Kievit F (2020) Nanoparticles for biomedical applications, Chapter book : Active targeting and transport, pp 19–36. https://doi.org/10.1016/B978-0-12-816662-8.00003-5

  • Thomsen MS, Johnsen KB, Kucharz K, Lauritzen M, Moos T (2022) Blood–brain barrier transport of transferrin receptor-targeted nanoparticles. Pharmaceutics 14:2237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong G, Fang Z, Huang G, Jing Y, Dai S, Jiang Q et al (2016) Gadolinium/DOTA functionalized poly(ethylene glycol)-block-poly(acrylamide-co-acrylonitrile) micelles with synergistically enhanced cellular uptake for cancer theranostics. RSC Adv 6:50534–50542

    Article  CAS  Google Scholar 

  • Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 93:705–16

    Article  PubMed  CAS  Google Scholar 

  • Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16:3–10

    Article  PubMed  CAS  Google Scholar 

  • Uthirakumar P, Hong C-H, Suh E-K, Lee Y-S (2006) Novel fluorescent polymer/zinc oxide hybrid particles: synthesis and application as a luminescence converter for white light-emitting diodes. Chem Mater 18:4990–4992

    Article  CAS  Google Scholar 

  • Valdivieso M, Kujawa AM, Jones T, Baker LH (2012) Cancer survivors in the United States: a review of the literature and a call to action. Int J Med Sci 9:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Cai Q, Li H, Cai H, Gao J, Yang G et al (2013) Circulating C-reactive protein and colorectal cancer risk: a report from the Shanghai Men’s Health Study. Carcinogenesis 34:2799–2803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao X, Liang S, Zhao Y, Huang D, Xing B, Cheng Z et al (2020) Core–shell structured 5-FU@ ZIF-90@ ZnO as a biodegradable nanoplatforms for synergistic cancer therapy. Nanoscale 12:3846–3854

    Article  PubMed  CAS  Google Scholar 

  • Xiong HM (2013) ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater 25:5329–5335

    Article  PubMed  CAS  Google Scholar 

  • Xiong H-M, Xu Y, Ren Q-G, Xia Y-Y (2008) Stable aqueous ZnO@ polymer core−shell nanoparticles with tunable photoluminescence and their application in cell imaging. J Am Chem Soc 130:7522–7523

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Du E, Liu Y, Cheng J, Zhang Z, Xu Y et al (2020) Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. Int J Nanomed 15:1457–1468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Samaneh Mohammadian did all the lab experiments and wrote the manuscript with support from Parvaneh Maghami, Amir Avan, and Majid Khazaei. Parvaneh Maghami supervised the project. Amir Avan and Majid Khazaei contributed to the interpretation of the cellular section and in vivo part, respectively. All authors reviewed the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Parvaneh Maghami.

Ethics declarations

Ethics approval

Every involved animal process was operated in conformity with the instruction of the Ethics Committee of Mashhad University of Medical Sciences.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadian, S., Avan, A., Khazaei, M. et al. The advancing of polymeric core–shell ZnO nanocomposites containing 5-fluorouracil for improving anticancer activity in colorectal cancer. Naunyn-Schmiedeberg's Arch Pharmacol 397, 899–911 (2024). https://doi.org/10.1007/s00210-023-02643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02643-x

Keywords

Navigation