Abstract
Diabetes mellitus (D.M.) is a common metabolic disorder caused mainly by combining two primary factors, which are (1) defects in insulin production by the pancreatic β-cells and (2) responsiveness of insulin-sensitive tissues towards insulin. Despite the rapid advancement in medicine to suppress elevated blood glucose levels (hyperglycemia) and insulin resistance associated with this hazard, a demand has undoubtedly emerged to find more effective and curative dimensions in therapeutic approaches against D.M. The administration of diabetes treatment that emphasizes insulin production and sensitivity may result in unfavorable side effects, reduced adherence, and potential treatment ineffectiveness. Recent progressions in genome editing technologies, for instance, in zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR-Cas)-associated nucleases, have greatly influenced the gene editing technology from concepts to clinical practices. Improvements in genome editing technologies have also opened up the possibility to target and modify specific genome sequences in a cell directly. CRISPR/Cas9 has proven effective in utilizing ex vivo gene editing in embryonic stem cells and stem cells derived from patients. This application has facilitated the exploration of pancreatic beta-cell development and function. Furthermore, CRISPR/Cas9 enables the creation of innovative animal models for diabetes and assesses the effectiveness of different therapeutic strategies in treating the condition. We, therefore, present a critical review of the therapeutic approaches of the genome editing tool CRISPR-Cas9 in treating D.M., discussing the challenges and limitations of implementing this technology.
This is a preview of subscription content, access via your institution.






Data availability
Not applicable.
Abbreviations
- CRISPR:
-
Clustered regularly interspaced short palindromic repeats
- CrRNA:
-
CRISPR RNA
- D.M.:
-
Diabetes mellitus
- DSB.:
-
Double-strand break
- DSBR:
-
Double-strand break repair
- G.D.M.:
-
Gestational diabetes mellitus
- GWAS:
-
Genome-wide association studies
- HDR:
-
Homology direct repair
- hiPSCs:
-
Human embryonic stem cells
- hiPSCs:
-
Human induced pluripotent stem cells
- hPSCs:
-
Human pluripotent stem cells
- H.R.:
-
Homologous recombination
- LADA:
-
Latent autoimmune diabetes of adults
- NDM:
-
Neonatal diabetes mellitus
- NHEJ:
-
Non-homologous end joining
- PAM.s:
-
Protospacer-adjacent motifs
- SDSA:
-
Synthesis-dependent strand annealing
- SgRNA:
-
Single-guide RNA
- T1DM:
-
Type I diabetes mellitus
- T2DM:
-
Type II diabetes mellitus
- TALENs:
-
Transcription activator-like effector nucleases
- TNF:
-
Tumor necrosis factor
- TracrRNA:
-
Trans-activating CRISPR
- WS:
-
Wolfram syndrome
- Z.F.N.:
-
Zinc-finger nucleases
References
Abreu GM, Soares CAPD, Tarantino RM, da Fonseca ACP, de Souza RB, Pereira MFC, Cabello PH, Rodacki M, Zajdenverg L, Zembrzuski VM, Campos Junior M (2020) Identification of the first PAX4-MODY family reported in Brazil. Diabetes Metab Syndr Obes 13:2623–2631. https://doi.org/10.2147/DMSO.S256858
Ahlqvist E, Turrini F, Lang ST, Taneera J, Zhou Y, Almgren P et al (2012) A common variant upstream of the PAX6 gene influences islet function in man. Diabetologia 55:94–104. https://doi.org/10.1007/S00125-011-2300-8/FIGURES/4
Alami FM, Ahmadi M, Bazrafshan H, Tabarraei A, Khosravi A, Tabatabaiefar MA et al (2012) Association of the TCF7L2 rs12255372 (G/T) variant with type 2 diabetes mellitus in an Iranian population. Genet Mol Biol 35:413–417. https://doi.org/10.1590/S1415-47572012005000029
Alcina A, Fedetz M, Ndagire D, Fernández O, Leyva L, Guerrero M et al (2009) IL2RA/CD25 gene polymorphisms: uneven association with multiple sclerosis (MS) and type 1 diabetes (T1D). PLoS One 4:e4137. https://doi.org/10.1371/JOURNAL.PONE.0004137
Apelqvist Å, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400(6747):877–881
Bailey R, Cooper JD, Zeitels L, Smyth DJ, Yang JHM, Walker NM et al (2007) Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes. Diabetes 56:2616. https://doi.org/10.2337/DB07-0652
Bakhtiyari A, Haghani K, Bakhtiyari S, Zaimy MA, Noori-Zadeh A, Gheysarzadeh A et al (2021) Association between ABCC8 Ala1369Ser polymorphism (rs757110 T/G) and type 2 diabetes risk in an iranian population: a case-control study. Endocr Metab Immune Disord Drug Targets 21:441–447. https://doi.org/10.2174/1871530320666200713091827
Balamurugan K, Bjørkhaug L, Mahajan S, Kanthimathi S, Njølstad PR, Srinivasan N et al (2016) Structure-function studies of HNF1A (MODY3) gene alternations in South Indian patients with monogenic diabetes. Clin Genet 90:486–495. https://doi.org/10.1111/CGE.12757
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5(3):448–459
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/SCIENCE.1138140
Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175. https://doi.org/10.1093/GENETICS/161.3.1169
Blau JE, Abegg MR, Flegel WA, Zhao X, Harlan DM, Rother KI (2015) Long-term immunosuppression after solitary islet transplantation is associated with preserved C-peptide secretion for more than a decade. Am J Transplant 15:2995–3001
Boesgaard TW, Žilinskaite J, Vänttinen M, Laakso M, Jansson PA, Hammarstedt A et al (2008) The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients–the EUGENE2 study. Diabetologia 51:816–820. https://doi.org/10.1007/S00125-008-0955-6
Bolotin A, Quinquis B, Sorokin A, Dusko Ehrlich S (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561. https://doi.org/10.1099/MIC.0.28048-0
Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM et al (2009) Alternations at the BLK locus linked to maturity-onset diabetes of the young and β-cell dysfunction. Proc Natl Acad Sci U S A 106(34):14460–14465. https://doi.org/10.1073/PNAS.0906474106
Boughanem H, Yubero-Serrano EM, López-Miranda J, Tinahones FJ, Macias-Gonzalez M (2021) Potential role of insulin growth-factor-binding protein 2 as therapeutic target for obesity-related insulin resistance. Int J Mol Sci 22:1–21. https://doi.org/10.3390/IJMS22031133
Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE et al (2011a) A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7(9):e1002293. https://doi.org/10.1371/JOURNAL.PGEN.1002293
Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE et al (2011b) A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7:1002293. https://doi.org/10.1371/JOURNAL.PGEN.1002293
Brafman DA, Moya N, Allen-Soltero S, Fellner T, Robinson M, McMillen ZL et al (2013) Analysis of SOX2-expressing cell populations derived from human pluripotent stem cells. Stem Cell Rep 1(5):464–78
Brodosi L, Baracco B, Mantovani V, Pironi L (2021) NEUROD1 mutation in an Italian patient with maturity-onset diabetes of the young 6: a case report. B.M.C. Endocr Disord 21:1–7. https://doi.org/10.1186/S12902-021-00864-W/FIGURES/2
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL et al (2008) Small CRISPR RNAs guide antiviral defence in prokaryotes. Science 321:960–964. https://doi.org/10.1126/SCIENCE.1159689
Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292
Chandran S, Rajadurai VS, Hoi WH, Flanagan SE, Hussain K, Yap F (2020) A novel HNF4A mutation causing three phenotypic forms of glucose dysregulation in a family. Front Pediatr 8:320. https://doi.org/10.3389/FPED.2020.00320/BIBTEX
Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK et al (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25:249–254. https://doi.org/10.1038/S41591-018-0326-X
Cho EY, Ryu JY, Lee HAR, Hong SH, Park HS, Hong KS et al (2019) Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type2 diabetes. J Nanobiotechnol 17(19):1–12. https://doi.org/10.1186/s12951-019-0452-8
Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD et al (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–2468. https://doi.org/10.1002/HEP.26237
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/SCIENCE.1231143
Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131. https://doi.org/10.1038/nm.3793
Cyranoski D (2016) Chinese scientists to pioneer first human CRISPR trial | nature. Nature 535(7613):476–477
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602. https://doi.org/10.1038/NATURE09886
Demirci FY, Dressen AS, Hamman RF, Bunker CH, Kammerer CM, Kamboh MI (2010) Association of a common G6PC2 variant with fasting plasma glucose levels in non-diabetic individuals. Ann Nutr Metab 56(1):59–64. https://doi.org/10.1159/000268019
Ding Q, Lee Y-K, Schaefer EAK, Peters DT, Veres A, Kim K et al (2012) A TALEN genome editing system for generating human stem cell-based disease models. Cell Stem Cell 12(2):238–251
Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394
Domsgen E, Lind K, Kong L, Hühn MH, Rasool O, Van Kuppeveld F et al (2016) An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets. Sci Rep 6:1–14. https://doi.org/10.1038/srep39378
Estimates of diabetes and its burden in the United States (2017) National Diabetes Statistics Repor
Fadheel HK, Kaftan AN, Naser FH, Hussain MK, Algenabi AHA, Mohammad HJ et al (2022) Association of CDKN2A/B gene polymorphisms (rs10811661 and rs2383208) with type 2 diabetes mellitus in a sample of the Iraqi population. Egypt J Med Hum Genet 23:1–7. https://doi.org/10.1186/S43042-022-00283-Z/TABLES/4
Fernandez-Zapico ME, van Velkinburgh JC, Gutiérez-Aguilar R, Neve B, Froguel P, Urrutia R et al (2009) MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem 284:36482–36490. https://doi.org/10.1074/JBC.M109.028852
Fischer Y, Ganic E, Ameri J, Xian X, Johannesson M, Semb H (2010) NANOG reporter cell lines generated by gene targeting in human embryonic stem cells. PLoS ONE 5(9):e12533
Francis Y, Tiercelin C, Alexandre-Heyman L, Larger E, Dubois-Laforgue D (2022) HNF1B-MODY masquerading as type 1 diabetes: a pitfall in the etiological diagnosis of diabetes. J Endocr Soc 6(8):bvac087. https://doi.org/10.1210/JENDSO/BVAC087
Fukuda H, Imamura M, Tanaka Y, Iwata M, Hirose H, Kaku K et al (2012) A single nucleotide polymorphism within DUSP9 is associated with susceptibility to type 2 diabetes in a Japanese population. PLoS One 7(9):e46263. https://doi.org/10.1371/JOURNAL.PONE.0046263
Gaj T, Gersbach CA, Barbas CF (2013) Z.F.N., TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/J.TIBTECH.2013.04.004
Gaj T, Sirk SJ, Shui SL, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8:a023754. https://doi.org/10.1101/CSHPERSPECT.A023754
Ge Y, Paisie TK, Newman JRB, McIntyre LM, Concannon P (2017) UBASH3A mediates risk for type 1 diabetes through inhibition of T-cell receptor-induced NF-κB signaling. Diabetes 66:2033–2043. https://doi.org/10.2337/DB16-1023/-/DC1
Gerrard L, Zhao D, Clark AJ, Cui W (2005) Stably transfected human embryonic stem cell clones express OCT4-specific c green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23(1):124–133
Giza S, Goulas A, Gbandi E, Effraimidou S, Papadopoulou-Alataki E, Eboriadou M, Galli-Tsinopoulou A (2013) The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int 2013:721604. https://doi.org/10.1155/2013/721604
Gomez-Peralta F, Abreu Padín C (2014) Do we need new treatments for type 2 diabetes? Endocrinol Nutr 61(6):323–328
González F, Zhu Z, Shi Z-D, Lelli K, Verma N, Li QV et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15(2):215–226
Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129(10):2447–2457
Gyllenberg A, Asad S, Piehl F, Swanberg M, Padyukov L, Van Yserloo B et al (2012) Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes. Genes Immun 13:632–640. https://doi.org/10.1038/GENE.2012.44
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR–Cas9 genome editing induces a p53-mediated DNA. damage response. Nat Med 24:927–930. https://doi.org/10.1038/s41591-018-0049-z
Hakonarson H, Grant SFA, Bradfield JP, Marchand L, Kim CE, Glessner JT et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448:591–594. https://doi.org/10.1038/NATURE06010
Halkova T, Bradnova O, Vankova M, Vejrazkova D, Lukasova P, Vcelak J, Kvasnickova H, Stanicka S, Bendlova B (2012) Testing of type 2 diabetes risk locus rs7578597 in THADA gene in the czech population. In Endocrine Abstracts. Bioscientifica 29
Haris B, Mohammed I, Syed N, Fakhro K, Hussain K (2021) Maturity-onset diabetes of the young (MODY) due to PDX1 mutation in a sib-pair diabetes family from Qatar. Clin Case Reports 9(12):e05141. https://doi.org/10.1002/CCR3.5141
Hockemeyer D, Jaenisch R (2010) Gene targeting in human pluripotent cells. Cold Spring Harb Symp Quant Biol 75:201–209
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC et al (2009) Efficient targeting of expressed and silent genes in human E.S.C.s and iPSCs using zinc-fi meganucleases. Nat Biotechnol 27(9):851–857
Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734
Holmkvist J, Banasik K, Andersen G, Unoki H, Jensen TS, Pisinger C et al (2009) The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load. PLoS One 4(6):e5872. https://doi.org/10.1371/JOURNAL.PONE.0005872
Hu M, Cherkaoui I, Misra S, Rutter GA (2020) Functional genomics in pancreatic β cells: recent advances in gene deletion and genome editing technologies for diabetes research. Front Endocrinol (lausanne) 11:799. https://doi.org/10.3389/FENDO.2020.576632/BIBTEX
Huang Y, Yu H, Cao Q, Deng J, Huang X, Kijlstra A et al (2017) The association of chemokine gene polymorphisms with V.K.H. and Behcet’s disease in a Chinese Han population. Biomed Res Int 2017:1274960. https://doi.org/10.1155/2017/1274960
International Diabetes Federation. I.D.F (2019) Diabetes Atlas, 9th edn. International Diabetes Federation, Brussels
Improta Caria AC, Nonaka CKV, Pereira CS, Soares MBP, Macambira SG, Souza BSDF (2018) Exercise training-induced changes in microRNAs: beneficial regulatory effects in hypertension, type 2 diabetes, and obesity. Int J Mol Sci 19(11):3608
Ishibashi F, Taniguchi M, Kosaka A, Uetake H, Tavakoli M (2019) Improvement in neuropathy outcomes with normalizing HbA1cin patients with type 2 diabetes. Diabetes Care 42(1):110–118
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakamura A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion and identification of the gene product. J Bacteriol 169:5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987
Jansen R, Van Embden JDA, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575. https://doi.org/10.1046/J.1365-2958.2002.02839.X
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/SCIENCE.1225829
Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609
Kadi FA, Yuniati T, Sribudiani Y, Rachmadi D (2021) The association of rs187238, rs19465518 and rs1946519 IL-8 polymorphisms with acute kidney injury in preterm infants. Biomedicine 11:43. https://doi.org/10.37796/2211-8039.1231
Kazakova EV, Chen M, Jamaspishvili E, Lin Z, Yu J, Sun L et al (2018) Association between RBMS1 gene rs7593730 and BCAR1 gene rs7202877 and Type 2 diabetes mellitus in the Chinese Han population. Acta Biochem Pol 65:377–382. https://doi.org/10.18388/ABP.2017_1451
Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141(1):219–223
Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG et al (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 368(36):765–771. https://doi.org/10.1038/nbt.4192
Krentz NAJ, Nian C, Lynn FC (2014) TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm. PLoS ONE 9(12):e114275
Kretowski A, Adamska E, Maliszewska K, Wawrusiewicz-Kurylonek N, Citko A, Goscik J et al (2015) The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism. Genes Nutr 10:1–7. https://doi.org/10.1007/S12263-015-0454-6
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452
Kycia I, Wolford BN, Huyghe JR, Fuchsberger C, Vadlamudi S, Kursawe R et al (2018) A common type 2 diabetes risk variant potentiates activity of an evolutionarily conserved islet stretch enhancer and increases C2CD4A and C2CD4B expression. Am J Hum Genet 102(4):620–635. https://doi.org/10.1016/J.AJHG.2018.02.020
Lei SQ, Wang JY, Li RM, Chang J, Li Z, Ren L, Sang YM (2020) MODY10 caused by c.309–314del CCAGCT insGCGC mutation of the insulin gene: a case report. Am J Transl Res 12(10):6599–6607
Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S et al (2016) Editing DNA. methylation in the mammalian genome. Cell 167(1):233–247. https://doi.org/10.1016/j.cell.2016.08.056
Ley SH, Hegele RA, Harris SB, Mamakeesick M, Cao H, Connelly PW et al (2011) HNF1A G319S variant, active cigarette smoking and incident type 2 diabetes in Aboriginal Canadians: a population-based epidemiological study. B.M.C. Med Genet 12:1–7. https://doi.org/10.1186/1471-2350-12-1/FIGURES/1
Li X, Li Y, Song B, Guo S, Chu S, Jia N et al (2012) Hematopoietically-expressed homeobox gene three widely-evaluated polymorphisms and risk for diabetes: a meta-analysis. PLoS One 7(11):e49917. https://doi.org/10.1371/JOURNAL.PONE.0049917
Li YY, Wang LS, Lu XZ, Yang ZJ, Wang XM, Zhou CW et al (2013) CDKAL1 gene rs7756992 A/G polymorphism and type 2 diabetes mellitus: a meta-analysis of 62,567 subjects. Sci Rep 3:3131. https://doi.org/10.1038/SREP03131
Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y et al (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171(7):1495–1507. https://doi.org/10.1016/j.cell.2017.10.025
Lin L, Quan H, Chen K, Chen D, Lin D, Fang T (2020) ABCC8-related maturity-onset diabetes of the young (MODY12): A report of a Chinese family. Front Endocrinol (lausanne) 11:645. https://doi.org/10.3389/FENDO.2020.00645
Liu SS, Ji-Quan L, Ye D (2014) PTPN2, a potential therapeutic target for type 1 diabetes? Arq Bras Endocrinol Metab 58:978–979. https://doi.org/10.1590/0004-2730000003561
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y et al (2019) Neurog3-independent methylation is the earliest detectable mark distinguishing pancreatic progenitor identity. Dev Cell 48(1):49–63. https://doi.org/10.1016/j.devcel.2018.11.048
Ma L, Liu Q, Jiang Y, Zhao H, Zhao T, Cao Y et al (2019) Genetically elevated circulating homocysteine concentrations increase the risk of diabetic kidney disease in Chinese diabetic patients. J Cell Mol Med 23(4):2794–2800
Makarova KS & Koonin EV (2015) Annotation and classification of CRISPR-Cas systems in Methods in molecular biology (Clifton, N.J.), 1311, 47–75. https://doi.org/10.1007/978-1-4939-2687-9_4
Makhzoom O, Kabalan Y, Al-Quobaili F (2019) Association of KCNJ11 rs5219 gene polymorphism with type 2 diabetes mellitus in a population of Syria: a case-control study. BMC Med Gene 20(1):107. https://doi.org/10.1186/S12881-019-0846-3
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/SCIENCE.1232033
Mattana TCC, Santos AS, Fukui RT, Mainardi-Novo DTO, Costa VS, Santos RF et al (2014) CD226 rs763361 is associated with the susceptibility to type 1 diabetes and greater frequency of GAD65 autoantibody in a Brazilian cohort. Mediators Inflamm 2014:694948. https://doi.org/10.1155/2014/694948
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ et al (2020) Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 12:eaax9106. https://doi.org/10.1126/SCITRANSLMED.AAX9106
McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM (2015) The basic helix-loop-helix transcription factor NEUROG3 is required for development of the human endocrine pancreas. Diabetes 64(7):2497–2505
Mir MM, Mir R, Alghamdi MAA, Wani JI, Elfaki I, Sabah ZU et al (2022) Potential impact of GCK., MIR-196A-2 and MIR-423 gene abnormalities on the development and progression of type 2 diabetes mellitus in Asir and Tabuk regions of Saudi Arabia. Mol Med Rep 25(5):162. https://doi.org/10.3892/MMR.2022.12675
Mittal RD (2019) Gene editing in clinical practice: where are we? Indian J Clin Biochem 34(1):19–25
Mohás M, Kisfali P, Járomi L, Maász A, Fehér E, Csöngei V et al (2010) GCKR gene functional variants in type 2 diabetes and metabolic syndrome: do the rare variants associate with increased carotid intima-media thickness? Cardiovasc Diabetol 9:79. https://doi.org/10.1186/1475-2840-9-79
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/S00239-004-0046-3
Nguyen-Tu MS, Martinez-Sanchez A, Leclerc I, Rutter G A, Xavier G, da S (2020) Reduced expression of TCF7L2 in adipocyte impairs glucose tolerance associated with decreased insulin secretion, incretins levels and lipid metabolism dysregulation in male mice. bioRxiv, 2020.05.18.102384. https://doi.org/10.1101/2020.05.18.102384
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the P.O.U. transcription factor Oct4. Cell 95(3):379–391
Nicolino M, Claiborn KC, Senée V, Boland A, Stoffers DA, Julier C (2010) A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine defi - ciency. Diabetes 59(3):733–740
Nielsen T, Sparsø T, Grarup N, Jørgensen T, Pisinger C, Witte DR et al (2011) Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release. Diabetologia 54:1052–1056. https://doi.org/10.1007/S00125-011-2054-3
Nisticò L, Cascino I, Buzzetti R, Pozzilli P (2013) CTLA-4 in type 1 diabetes mellitus. In Madame Curie Bioscience Database. Landes Bioscience
O’Driscoll M, Jeggo PA (2006) The role of double-strand break repair - insights from human genetics. Nat Rev Genet 7:45–54. https://doi.org/10.1038/NRG1746
Offield M, Jetton T, Labosky P, Ray M, Stein R, Magnuson M et al (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995
Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L et al (2013) TALEN-based gene correction for epidermolysis bullosa. Mol Ther 21:1151–1159. https://doi.org/10.1038/MT.2013.56
Ou K, Yu M, Moss NG, Wang YJ, Wang AW, Nguyen SC et al (2019) Targeted demethylation at the CDKN1C/p57 locus induces human beta cell replication. J Clin Invest 129(1):209–214. https://doi.org/10.1172/JCI99170
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH et al (2014) Generation of functional human pancreatic β cells in vitro. Cell 159(2):428–439
Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240(3):530–565
Pei Q, Huang Q, Yang GP, Zhao YC, Yin JY, Song M et al (2013) PPAR-γ2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol Sin 34:255–261. https://doi.org/10.1038/APS.2012.144
Piper K, Brickwood S, Turnpenny L (2004) Beta cell differentiation during early human pancreas development. J Endocrinol 181(1):11–23
Porteus MH (2019) A new class of medicines through DNA. Editing N Engl J Med 380:947–959. https://doi.org/10.1056/NEJMRA1800729
Radzisheuskaya A, Le Bin CG, dos Santos RL, Theunissen TW, Castro LFC, Nichols J et al (2013) A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 15(6):579–590
Rao P, Wang H, Fang H, Gao Q, Zhang J, Song M et al (2016) Association between IGF2BP2 polymorphisms and type 2 diabetes mellitus: a case–control study and meta-analysis. Int J Environ Res Public Health 13(6):574. https://doi.org/10.3390/IJERPH13060574
Rezania A, Bruin J, Riedel M, Mojibian M (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61(8):2016–2029
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133
Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31(11):2432–2442
Rizzino A (2013) Concise review: the Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31(6):1033–1039
Roh JI, Lee J, Park SU, Kang YS, Lee J, Oh AR et al (2018) CRISPR-Cas9-mediated generation of obese and diabetic mouse models. Exp Anim 67(2):229–237. https://doi.org/10.1538/expanim.17-0123
Roy P, Saha S, Chakraborty J (2021) Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle-based RNAi and CRISPR-Cas9 system: a review. J Drug Deliv Sci Technol 66:102830
Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P et al (2011) Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic alternations in NEUROG3. Diabetes 60(4):1349–1353
Rudland VL (2019) Diagnosis and management of glucokinase monogenic diabetes in pregnancy: current perspectives. Diabetes Metab Syndr Obes Targets Ther 12:1081–1089. https://doi.org/10.2147/DMSO.S186610
Sajovic J, Cilenšek I, Mankoč S, Tajnšek Š, Kunej T, Petrovič D et al (2019) Vascular endothelial growth factor (VEGF)-related polymorphisms rs10738760 and rs6921438 are not risk factors for proliferative diabetic retinopathy (P.D.R.) in patients with type 2 diabetes mellitus (T2DM). Bosn J Basic Med Sci 19(1):94–100. https://doi.org/10.17305/BJBMS.2018.3519
Sarhangi N, Sharifi F, Hashemian L, Hassani Doabsari M, Heshmatzad K, Rahbaran M et al (2020) PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Reports 10:1–18. https://doi.org/10.1038/s41598-020-69363-7
Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A et al (2003) Agenesis of the human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab 88(9):4398–4406
Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ et al (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127(16):3533–3542
Shapiro A, Lakey J, Ryan E (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C (2021) CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther 29:571–586. https://doi.org/10.1016/J.YMTHE.2020.09.028
Silva ANA, Nicchio IG, da Silva BR, Martelli MGG, Hidalgo MAR, Nepomuceno R et al (2022) Polymorphisms in risk genes of type 2 diabetes mellitus could also be markers of susceptibility to periodontitis. Arch Oral Biol 143:105529. https://doi.org/10.1016/J.ARCHORALBIO.2022.105529
Simonis-Bik AM, Nijpels G, Van Haeften TW, Houwing-Duistermaat JJ, Boomsma DI, Reiling E et al (2010) Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic β-cell function. Diabetes 59:293–301. https://doi.org/10.2337/DB09-1048
Stafeev YS, Menshikov MY, Parfyonova YV (2019) Gene therapy of type 2 diabetes mellitus: state of art. Ter Arkh 91(2):149–152. https://doi.org/10.26442/00403660.2019.02.000042
Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58:568–574. https://doi.org/10.1016/J.MOLCEL.2015.02.032
Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17(2):138–139
Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (2004) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15(1):106–110
Sun C, Wei H, Chen X, Zhao Z, Du H, Song W et al (2016) ERBB3-rs2292239 as primary type 1 diabetes association locus among non-HLA genes in Chinese. Meta Gene 9:120. https://doi.org/10.1016/J.MGENE.2016.05.003
Sunjaya AP, Sunjaya AF (2018) Glycated haemoglobin targets and glycemic control: link with lipid, uric acid and kidney profile. Diabetes Metab Syndr 12(5):743–748
Tao Z, Shi A, Zhao J (2015) Epidemiological perspectives of diabetes. Cell Biochem Biophys 73:181–185
Tarnowski M, Malinowski D, Safranow K, Dziedziejko V, Pawlik A (2017) CDC123/CAMK1D gene rs12779790 polymorphism and rs10811661 polymorphism upstream of the CDKN2A/2B gene in women with gestational diabetes. J Perinatol 37:345–348. https://doi.org/10.1038/JP.2016.249
Teo AKK, Gupta MK, Doria A, Kulkarni RN (2015) Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab 4:593–604. https://doi.org/10.1016/J.MOLMET.2015.06.006
Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H et al (2008) Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells 26(1):119–126
Trombetta M, Bonetti S, Boselli ML, Miccoli R, Trabetti E, Malerba G et al (2013) PPARG2 Pro12Ala and ADAMTS9 rs4607103 as “insulin resistance loci” and “insulin secretion loci” in Italian individuals The GENFIEV study and the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 4. Acta Diabetol 50:401–408. https://doi.org/10.1007/S00592-012-0443-9
Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyüz L, Reinke P et al (2019) High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 25:242–248. https://doi.org/10.1038/S41591-018-0204-6
Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG (2010) The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 42:68–71. https://doi.org/10.1038/NG.493
Wang P, Rodriguez RT, Wang J, Ghodasara A, Kim SK (2011) Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8(3):335–346
Wong GKY, Chiu AT (2011) Gene therapy, gene targeting and induced pluripotent stem cells: applications in monogenic disease treatment. Biotechnol Adv 29:1–10. https://doi.org/10.1016/J.BIOTECHADV.2010.07.005
World Health Organization (2018) Diabetes Fact Sheet
World Health Organization. The top 10 causes of death. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 4 Jun 2021
Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44. https://doi.org/10.1016/J.CELL.2015.12.035
Xia Q, Chen ZX, Wang YC, Ma YS, Zhang F, Che W et al (2012) Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: a meta-analysis. PLoS One 7(11):e50107. https://doi.org/10.1371/JOURNAL.PONE.0050107
Xu T, Shi Y, Liu J, Liu Y, Zhu A, Xie C et al (2018) The rs10229583 polymorphism near paired box gene 4 is associated with gestational diabetes mellitus in Chinese women. J Int Med Res 46(1):115–121. https://doi.org/10.1177/0300060517714934
Yadav N, Narang J, Chhillar AK, Rana JS (2021) CRISPR: a new paradigm of theranostics. Nanomedicine 33:102350. https://doi.org/10.1016/J.NANO.2020.102350
Yang JHM, Downes K, Howson JMM, Nutland S, Stevens HE, Walker NM et al (2011) Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC Med Genet 12:59. https://doi.org/10.1186/1471-2350-12-59
Yiannakouris N, Cooper JA, Shah S, Drenos F, Ireland HA, Stephens JW et al (2012) IRS1 gene variants, dysglycaemic metabolic changes and type-2 diabetes risk. Nutr Metab Cardiovasc Dis 22:1024. https://doi.org/10.1016/J.NUMECD.2011.05.009
Zano S, Rubab ZE, Baig S, Shahid MA, Ahmad F, Iqbal F (2020) Association of the JAZF1 variant in adults with a parental history of type 2 diabetes mellitus in Pakistan. Cureus 12(12):e11930. https://doi.org/10.7759/CUREUS.11930
Zhai N, Bidares R, Makoui MH, Aslani S, Mohammadi P, Raz B et al (2020) Vitamin D receptor gene polymorphisms and the risk of the type 1 diabetes: a meta-regression and updated meta-analysis. BMC Endocr Disord 20:121. https://doi.org/10.1186/S12902-020-00575-8
Zhu Z, Verma N, González F, Shi Z-D, Huangfu D (2015) A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep 4(6):1–27
Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25(1):221–251
Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21(3):319–321
Author information
Authors and Affiliations
Contributions
J.B., A.D., A.R.L., S.M.: conceptualization, J.B., A.D., A.R.L., A.D.H., S.K., A.R., S.R.; writing an original draft: software; P.R., S.M., A.C., H.S.T.: supervision, reviewing, and editing. All authors have read and agreed to the published version of the manuscript. The authors confirm that no paper mill or artificial intelligence was used.
Corresponding author
Ethics declarations
Ethical approval
No ethical approval is required.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bora, J., Dey, A., Lyngdoh, A.R. et al. A critical review on therapeutic approaches of CRISPR-Cas9 in diabetes mellitus. Naunyn-Schmiedeberg's Arch Pharmacol 396, 3459–3481 (2023). https://doi.org/10.1007/s00210-023-02631-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00210-023-02631-1