Skip to main content
Log in

Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Curcumin (CUR) exhibits a definite curative effect in the treatment of depression. To identify potential antidepressant targets and mechanisms of action of CUR. This study used network pharmacology to explore the signaling pathways and CUR-related targets in depression. C57BL/6 J mice (male,12–14 weeks old) were randomly divided into four groups (n = 8): saline-treated (control mice), lipopolysaccharide (LPS, 2 mg/kg/day, intraperitoneally), LPS + CUR (50 mg/kg/day, intragastrically), and LPS + CUR + LY294002 (7.5 mg/kg/day, intraperitoneally). After 1 week, behavioral tests were performed. Then, neuronal damage in the prefrontal cortex of mice was evaluated by hematoxylin–eosin (HE) staining. We uncovered the main active mechanism of CUR against depression using Western blotting and enzyme-linked immunosorbent assay (ELISA). Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the most significantly enriched pathway in CUR against depression was the PI3K-Akt pathway. Moreover, 52 targets were significantly correlated with the PI3K-Akt signaling pathway and CUR-related targets. In addition, among the top 50 targets ranked by degree in the protein–protein interaction (PPI) network, there were 23 targets involved in the 52 intersection targets. Administration of LPS alone extended immobility time in the open field test (OFT) and tail suspension test (TST) and decreased sucrose consumption in the sucrose preference test (SPT). Pretreatment with CUR relieved LPS-induced changes in the behavioral tests, activity of the PI3K-Akt signaling pathway, neuronal damage in the prefrontal cortex (PFC), and inflammatory response. Moreover, inhibition of the PI3K-Akt signaling pathway by LY294002 blocked the therapeutic effects of CUR. Our study indicates that CUR may be an effective antidepressant agent in an LPS-induced mouse model, partly because of its anti-inflammatory action through the PI3K-Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data of this study are included in this published article.

Abbreviations

BBB:

Blood-brain barrier

BCA:

Bicinchoninic acid

BDNF:

Brain-derived neurotrophic factor

BH:

Benjamini–Hochberg

COX-2:

Cyclooxygenase 2

CUMS:

Chronic unpredictable mild stress

CUR:

Curcumin

CUR-NLCs:

Curcumin-loaded nanostructured lipid carriers

ELISA:

Sandwich enzyme-linked immunosorbent assay

GEO:

Gene Expression Omnibus

GO:

Gene Ontology

GSEA:

Gene set enrichment analysis

HE:

Hematoxylin-eosin staining

i.p.:

Intraperitoneal

IDO:

Indoleamine 2, 3-dioxygenase

IL-1:

Interleukin-1

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LPS:

Lipopolysaccharide

MDD:

Major depressive disorder

NES:

Normalized enrichment score

NF-κβ:

Nuclear factor kappa beta

NLRP3:

NOD-like receptor protein 3

OFT:

Open field test

PFC:

Prefrontal cortex

PPI:

Protein-protein interaction

RO5:

Lipinski’s Rule of Five

SPT:

Sucrose preference test

TBS:

Trisbuffered saline

TNF-α:

Tumor necrosis factor-alpha

TRYCATs:

Tryptophan catabolites

TST:

Tail suspension test

References

  • Adzic M, Djordjevic J, Mitic M, Brkic Z, Lukic I, Radojcic M (2015) The contribution of hypothalamic neuroendocrine, neuroplastic and neuroinflammatory processes to lipopolysaccharide-induced depressive-like behaviour in female and male rats: involvement of glucocorticoid receptor and C/EBP-β. Behav Brain Res 291:130–139

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal BB, Gupta SC, Sung B (2013) Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 169:1672–1692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S (2020) Melatonin act as an antidepressant via attenuation of neuroinflammation by targeting Sirt1/Nrf2/HO-1 signaling. Front Mol Neurosci 13:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257-w263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, Cole GM, Frautschy SA (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326:196–208

    Article  PubMed  CAS  Google Scholar 

  • Belinky F, Nativ N, Stelzer G, Zimmerman S, Iny Stein T, Safran M, Lancet D (2015) PathCards: multi-source consolidation of human biological pathways. Database (Oxford) 2015:bav006. https://doi.org/10.1093/database/bav006

  • Bhatia R, Sharma S, Bhadada SK, Bishnoi M, Kondepudi KK (2022) Lactic acid bacterial supplementation ameliorated the lipopolysaccharide-induced gut inflammation and dysbiosis in mice. Front Microbiol 13:930928

    Article  PubMed  PubMed Central  Google Scholar 

  • Brites D, Fernandes A (2015) Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 9:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Budni J, Lobato KR, Binfaré RW, Freitas AE, Costa AP, Martín-de-Saavedra MD, Leal RB, Lopez MG, Rodrigues AL (2012) Involvement of PI3K, GSK-3β and PPARγ in the antidepressant-like effect of folic acid in the forced swimming test in mice. J Psychopharmacol (Oxford, England) 26:714–723

    Article  Google Scholar 

  • Cao LH, Qiao JY, Huang HY, Fang XY, Zhang R, Miao MS, Li XM (2019) PI3K-AKT signaling activation and icariin: the potential effects on the perimenopausal depression-like rat model. Molecules 24(20):3700. https://doi.org/10.3390/molecules24203700

  • Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S (2019) New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet (London, England) 394:240–248

    Article  PubMed  Google Scholar 

  • Chen CW, Chen CC, Jian CY, Lin PH, Chou JC, Teng HS, Hu S, Lieu FK, Wang PS, Wang SW (2016) Attenuation of exercise effect on inflammatory responses via novel role of TLR4/PI3K/Akt signaling in rat splenocytes. J Appl Physiol (Bethesda, Md: 1985) 121:870–877

    Article  CAS  Google Scholar 

  • Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E (2018) TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun 69:556–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva Marques JG, Antunes FTT, da Silva Brum LF, Pedron C, de Oliveira IB, de Barros FalcãoFerraz A, Martins MIM, Dallegrave E, de Souza AH (2021) Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behavioural brain research 399:113002

    Article  PubMed  Google Scholar 

  • Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15:7–24

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H, Zhang S (2019) Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation. Front Cell Neurosci 13:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du Y, Li W, Li Y, Yang J, Wang X, Yin S, Wang X, Velez de-la-Paz OI, Gao Y, Chen H, Yin X, Shi H (2019) Repeated arctigenin treatment produces antidepressant- and anxiolytic-like effects in mice. Brain Res Bull 146:79–86

    Article  PubMed  CAS  Google Scholar 

  • Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J (2021) Natural products attenuate PI3K/Akt/mTOR signaling pathway: a promising strategy in regulating neurodegeneration. Phytomedicine 91:153664

    Article  PubMed  CAS  Google Scholar 

  • Fakhri S, Khodamorady M, Naseri M, Farzaei MH, Khan H (2020) The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol Res 159:104895

    Article  PubMed  CAS  Google Scholar 

  • Fakhri S, Moradi SZ, Farzaei MH, Bishayee A (2022) Modulation of dysregulated cancer metabolism by plant secondary metabolites: a mechanistic review. Semin Cancer Biol 80:276–305

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Song Q, Wang P, Li Y, Yang M, Liu B, Yu SY (2018a) Curcumin protects against chronic stress-induced dysregulation of neuroplasticity and depression-like behaviors via suppressing IL-1β pathway in rats. Neuroscience 392:92–106

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Song Q, Wang P, Li Y, Yang M, Yu SY (2018b) Neuroprotective effects of ginsenoside-Rg1 against depression-like behaviors via suppressing glial activation, synaptic deficits, and neuronal apoptosis in rats. Front Immunol 9:2889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J, Bu D, Liu X, Huo P, Cao W, Dong Q, Wu J, Zeng X, Wu Y, Zhao Y (2021) HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 49:D1197-d1206

    Article  PubMed  CAS  Google Scholar 

  • Fusar-Poli L, Vozza L, Gabbiadini A, Vanella A, Concas I, Tinacci S, Petralia A, Signorelli MS, Aguglia E (2020) Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr 60:2643–2653

    Article  PubMed  CAS  Google Scholar 

  • Garcia IJP, Kinoshita PF, Silva L (2019) Ouabain Attenuates Oxidative Stress and Modulates Lipid Composition in Hippocampus of Rats in Lipopolysaccharide-Induced Hypocampal Neuroinflammation in Rats. J Cell Biochem 120:4081–4091

    Article  PubMed  CAS  Google Scholar 

  • GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

  • Gerhard DM, Wohleb ES, Duman RS (2016) Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today 21:454–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillet BA, Velly LJ, Canolle B, Masmejean FM, Nieoullon AL, Pisano P (2005) Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem Int 46:337–346

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Xu C, Ni S, Zhang S, Li Q, Zeng P, Pi G, Liu E, Sun DS, Liu Y, Wang Z, Chen H, Yang Y, Wang JZ (2019) Elevation of pS262-tau and demethylated PP2A in retina occurs earlier than in hippocampus during hyperhomocysteinemia. J Alzheimer’s Dis: JAD 68:367–381

    Article  PubMed  CAS  Google Scholar 

  • Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrman H, Kieling C, McGorry P, Horton R, Sargent J, Patel V (2019) Reducing the global burden of depression: a Lancet-World Psychiatric Association Commission. Lancet (London, England) 393:e42–e43

    Article  PubMed  Google Scholar 

  • Hewlings SJ, Kalman DS (2017) Curcumin: a review of its effects on human health. Foods (Basel, Switzerland) 6(10):92

    PubMed  Google Scholar 

  • Hodes GE, Ménard C, Russo SJ (2016) Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol Stress 4:15–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Huan Z, Mei Z, Na H, Xinxin M, Yaping W, Ling L, Lei W, Kejin Z, Yanan L (2021) lncRNA MIR155HG alleviates depression-like behaviors in mice by regulating the miR-155/BDNF axis. Neurochem Res 46:935–944

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Liang Y, Tian W, Ma J, Huang L, Li B, Chen R, Li D (2020) Antitumor activity and mechanism of robustic acid from Dalbergia benthami Prain via computational target fishing. Molecules (Basel, Switzerland) 25(17):3919

    Article  PubMed  CAS  Google Scholar 

  • Jangra A, Kwatra M, Singh T, Pant R, Kushwah P, Sharma Y, Saroha B, Datusalia AK, Bezbaruah BK (2016) Piperine augments the protective effect of curcumin against lipopolysaccharide-induced neurobehavioral and neurochemical deficits in mice. Inflammation 39:1025–1038

    PubMed  CAS  Google Scholar 

  • Jeon SA, Lee E, Hwang I, Han B, Park S, Son S, Yang J, Hong S, Kim CH, Son J, Yu JW (2017) NLRP3 inflammasome contributes to lipopolysaccharide-induced depressive-like behaviors via indoleamine 2,3-dioxygenase induction. Int J Neuropsychopharmacol 20:896–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji P, Wang L, Chen Y, Wang S, Wu Z (2020) Hyaluronic Acid Hydrophilic Surface Rehabilitating Curcumin Nanocrystals for Targeted Breast Cancer Treatment with Prolonged Biodistribution. Biomater Sci 8:462–472

    Article  PubMed  CAS  Google Scholar 

  • Jiang CY, Qin XY, Yuan MM, Lu GJ, Cheng Y (2018) 2,3,5,4’-tetrahydroxystilbene-2-O-beta-D-glucoside reverses stress-induced depression via inflammatory and oxidative stress pathways. Oxid Med Cell Longev 2018:9501427

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Lv JW, Wang HX, Lu C, Wang Q, Xia TJ, Bao Y, Li SS, Liu XM (2019) Dammarane sapogenins alleviates depression-like behaviours induced by chronic social defeat stress in mice through the promotion of the BDNF signalling pathway and neurogenesis in the hippocampus. Brain Res Bull 153:239–249

    Article  PubMed  Google Scholar 

  • Koo JW, Duman RS (2009) Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr Opin Investig Drugs (London, England: 2000) 10:664–671

    CAS  Google Scholar 

  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19:699–709

    Article  PubMed  CAS  Google Scholar 

  • Krogh J, Benros ME, Jørgensen MB, Vesterager L, Elfving B, Nordentoft M (2014) The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain Behav Immun 35:70–76

    Article  PubMed  CAS  Google Scholar 

  • Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P (2014) Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients 6:1194–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology 201:435–442

    Article  PubMed  CAS  Google Scholar 

  • Leday GGR, Vértes PE, Richardson S, Greene JR, Regan T, Khan S, Henderson R, Freeman TC, Pariante CM, Harrison NA, Perry VH, Drevets WC, Wittenberg GM, Bullmore ET (2018) Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatry 83:70–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, Liu Y, Jiang A, Li S (2021a) Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 92:10–24

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ali T, Zheng C, Liu Z, He K, Shah FA, Ren Q, Rahman SU, Li N, Yu ZJ, Li S (2021) Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation 18:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ (2011) Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 35:1785–1793

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609-614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopresti AL (2022) Potential role of curcumin for the treatment of major depressive disorder. CNS Drugs 36:123–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Xu X, Huang Y, Li T, Ma C, Xu G, Yin H, Xu X, Ma Y, Wang L, Huang Z, Yan Y, Wang B, Xiao S, Zhou L, Li L, Zhang Y, Chen H, Zhang T, Yan J, Ding H, Yu Y, Kou C, Shen Z, Jiang L, Wang Z, Sun X, Xu Y, He Y, Guo W, Jiang L, Li S, Pan W, Wu Y, Li G, Jia F, Shi J, Shen Z, Zhang N (2021) Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study. Lancet Psychiatry 8:981–990

    Article  PubMed  Google Scholar 

  • Lv QQ, Wu WJ, Guo XL, Liu RL, Yang YP, Zhou DS, Zhang JX, Liu JY (2014) Antidepressant activity of astilbin: involvement of monoaminergic neurotransmitters and BDNF signal pathway. Biol Pharm Bull 37:987–995

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 55:1263–1273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Li XP, Ji HS, Liu YF, Li EZ (2018) Baicalein protects rats with diabetic cardiomyopathy against oxidative stress and inflammation injury via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Med Sci Monit 24:5368–5375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma M, Ren Q, Zhang JC, Hashimoto K (2014) Effects of brilliant blue G on serum tumor necrosis factor-α levels and depression-like behavior in mice after lipopolysaccharide administration. Clin Psychopharmacol Neurosci 12:31–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maes M, Anderson G, Kubera M, Berk M (2014) Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 18:495–512

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Scharpé S, Meltzer HY, Bosmans E, Suy E, Calabrese J, Cosyns P (1993) Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 49:11–27

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y (2019) Roles of PI3K/AKT/GSK3 pathway involved in psychiatric illnesses. Diseases (Basel, Switzerland) 7(1):22

    PubMed  CAS  Google Scholar 

  • Mi H, Guo N, Kejariwal A, Thomas PD (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35:D247-252

    Article  PubMed  CAS  Google Scholar 

  • Mohd Faudzi SM, Abdullah MA, Abdull Manap MR, Ismail AZ, Rullah K, Mohd Aluwi MFF, Mazila Ramli AN, Abas F, Lajis NH (2020) Inhibition of nitric oxide and prostaglandin E(2) production by pyrrolylated-chalcones: synthesis, biological activity, crystal structure analysis, and molecular docking studies. Bioorg Chem 94:103376

    Article  PubMed  CAS  Google Scholar 

  • Nanni V, Uher R, Danese A (2012) Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis. Am J Psychiatry 169:141–151

    Article  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  PubMed  CAS  Google Scholar 

  • Ohgi Y, Futamura T, Kikuchi T, Hashimoto K (2013) Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 103:853–859

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Chen XY, Zhang QY, Kong LD (2014) Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100

    Article  PubMed  CAS  Google Scholar 

  • Pantharos P, Sukcharoen P, Phadungrakwittaya R, Akarasereenont P, Booranasubkajorn S, Lumlerdkij N (2022) Utilization of UPLC-PDA and GC-MS/MS coupled with metabolomics analysis to identify bioactive metabolites in medicinal turmeric at different ages for the quality assurance. Phytomedicine 102:154157

    Article  PubMed  CAS  Google Scholar 

  • Pizzagalli DA, Roberts AC (2022) Prefrontal Cortex and Depression. Neuropsychopharmacology 47:225–246

    Article  PubMed  Google Scholar 

  • Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19:2093–2100

    PubMed  CAS  Google Scholar 

  • Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27:24–31

    Article  PubMed  CAS  Google Scholar 

  • Rubab S, Naeem K, Rana I, Khan N, Afridi M, Ullah I, Shah FA, Sarwar S, Din FU, Choi HI, Lee CH, Lim CW, Alamro AA, Kim JK, Zeb A (2021) Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int J Pharm 603:120670

    Article  PubMed  CAS  Google Scholar 

  • Sahebkar A (2014) Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res: PTR 28:633–642

    Article  PubMed  CAS  Google Scholar 

  • Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S (2014) Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolec Med 16:106–118

    Article  CAS  Google Scholar 

  • Sekio M, Seki K (2014) Lipopolysaccharide-induced depressive-like behavior is associated with α1-adrenoceptor dependent downregulation of the membrane GluR1 subunit in the mouse medial prefrontal cortex and ventral tegmental area. Int J Neuropsychopharmacol 18:pyu005

    PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol 595:453–470

    Article  PubMed  Google Scholar 

  • Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762

    Article  PubMed  CAS  Google Scholar 

  • Shi HS, Zhu WL, Liu JF, Luo YX, Si JJ, Wang SJ, Xue YX, Ding ZB, Shi J, Lu L (2012) PI3K/Akt signaling pathway in the basolateral amygdala mediates the rapid antidepressant-like effects of trefoil factor 3. Neuropsychopharmacology 37:2671–2683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddique YH, Khan W, Singh BR, Naqvi AH (2013) Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson’s disease. ISRN Pharmacol 2013:794582

    Article  PubMed  PubMed Central  Google Scholar 

  • Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42:151–157

    Article  PubMed  Google Scholar 

  • Sun C, Gao M, Qiao M (2023) Research progress of traditional Chinese medicine compound “Xiaochaihu Decoction” in the treatment of depression. Biomed Pharmacother 159:114249

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607-d613

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Liu X, Zhao J, Tan X, Liu B, Zhang G, Sun L, Han D, Chen H, Wang M (2016) Hypothermia-induced ischemic tolerance is associated with Drp1 inhibition in cerebral ischemia-reperfusion injury of mice. Brain Res 1646:73–83

    Article  PubMed  CAS  Google Scholar 

  • Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L (2013) Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 145:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB (2017) Neuroinflammation and infection: molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol 7:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E (2003) Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology 170:429–433

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Xu Y, Wu HL, Li YB, Li YH, Guo JB, Li XJ (2008) The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 578:43–50

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Shen CY, Jiang JG (2019) Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery. Pharmacol Res 150:104520

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zhang Q, Yuan L, Wang S, Liu L, Yang X, Li G, Liu D (2014) The effects of curcumin on depressive-like behavior in mice after lipopolysaccharide administration. Behav Brain Res 274:282–290

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Zhu J, Cheng Y, Huang Q (2019) Ovotransferrin fibril-stabilized Pickering emulsions improve protection and bioaccessibility of curcumin. Food Res Int (Ottawa, Ont) 125:108602

    Article  CAS  Google Scholar 

  • Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP, Sheridan JF (2011) β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31:6277–6288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Sun N, Ren Y, Sun Y, Xu Y, Li A, Wu K, Zhang K (2012) Association between AKT1 gene polymorphisms and depressive symptoms in the Chinese Han population with major depressive disorder. Neural Regen Res 7:235–239

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yao W, Zhang JC, Dong C, Zhuang C, Hirota S, Inanaga K, Hashimoto K (2015) Effects of amycenone on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 136:7–12

    Article  PubMed  CAS  Google Scholar 

  • Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38:637–658

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu JJ, Pei LB, Zhang Y, Wen ZY, Yang JL (2015) Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. J Clin Psychopharmacol 35:406–410

    Article  PubMed  CAS  Google Scholar 

  • Zeng P, Shi Y, Wang XM, Lin L, Du YJ, Tang N, Wang Q, Fang YY, Wang JZ, Zhou XW, Lu Y, Tian Q (2019) Emodin rescued hyperhomocysteinemia-induced dementia and Alzheimer’s disease-like features in rats. Int J Neuropsychopharmacol 22:57–70

    Article  PubMed  CAS  Google Scholar 

  • Zeng P, Su HF, Ye CY, Qiu SW, Shi A, Wang JZ, Zhou XW, Tian Q (2022) A tau pathogenesis-based network pharmacology approach for exploring the protections of Chuanxiong Rhizoma in Alzheimer’s disease. Front Pharmacol 13:877806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng P, Wang XM, Ye CY, Su HF, Fang YY, Zhang T, Tian Q (2021) Mechanistic insights into the anti-depressant effect of emodin: an integrated systems pharmacology study and experimental validation. Aging 13:15078–15099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Browne A, Child D, Tanzi RE (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J Biol Chem 285:28472–28480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, Li SX, Shirayama Y, Hashimoto K (2014) Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 18:pyu077

    PubMed  Google Scholar 

  • Zhang JC, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14:721–731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Xu T, Wang S, Yu L, Liu D, Zhan R, Yu SY (2012) Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav Brain Res 235:67–72

    Article  PubMed  CAS  Google Scholar 

  • Zhe Q, Sulei W, Weiwei T, Hongyan L, Jianwei W (2017) Effects of Jiaotaiwan on depressive-like behavior in mice after lipopolysaccharide administration. Metab Brain Dis 32:415–426

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu H, Tong S, Yan C, Zhou A, Wang M, Li C (2022) Triptolide attenuates LPS-induced activation of RAW 264.7 macrophages by inducing M1-to-M2 repolarization via the mTOR/STAT3 signaling. Immunopharmacol Immunotoxicol 44(6):894–901. https://doi.org/10.1080/08923973.2022.2093738

  • Zhuang W, Liu SL, Xi SY, Feng YN, Wang K, Abduwali T, Liu P, Zhou XJ, Zhang L, Dong XZ (2023) Traditional Chinese medicine decoctions and Chinese patent medicines for the treatment of depression: efficacies and mechanisms. J Ethnopharmacol 307:116272

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Research Foundation of Scientific Research Program of Jianghan University (grant no. 2021yb 131), Research Foundation of Scientific Research Program of the University of South China (grant no. 220XQD090), Research Foundation of Education Bureau of Hunan Province (grant no. 22B0416), and Provincial Natural Science Foundation of Hunan (grant no. 2023JJ40560).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used. Conceptualization: P.Z. and M.F.; investigation: P.Z.; methodology: P.Z., J.G., and Z.X.; supervision: P.Z. and J.G.; visualization: P.Z., Z.X., M.F., and K.Z.; writing—original draft: J.G.; writing—review and editing: P.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Peng Zeng.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary figure 1

(PNG 276 kb)

High resolution (TIF 2323 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Fang, M., Xiong, Z. et al. Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. Naunyn-Schmiedeberg's Arch Pharmacol 397, 583–598 (2024). https://doi.org/10.1007/s00210-023-02628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02628-w

Keywords

Navigation