Skip to main content
Log in

Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for the research described in article.

References

  • Al-Humadi HW, Al-Saigh RJ, Al-Humadi AW (2017) Addressing the challenges of tuberculosis: a brief historical account. Front Pharmacol 8:689

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwanwan D, Singh SK, Singh S et al (2020) Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 1873(1):188314

    Article  CAS  PubMed  Google Scholar 

  • Bailly C (2019) Cepharanthine: an update of its mode of action, pharmacological properties and medical applications. Phytomedicine 62:152956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biospace (n.d.) Pharmadrug announces successful completion of PreIND meeting with FDA regarding proposed development of its cepharanthine for treatment of mild to moderate COVID-19 infection. https://www.newsfilecorp.com/release/105841.2021.

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Ding S, Dong X et al (2022) Liensinine inhibits cell growth and blocks autophagic flux in nonsmall-cell lung cancer. J Oncol 2022:1533779

    Article  PubMed  PubMed Central  Google Scholar 

  • Che L, Yuan YH, Jia J et al (2012) Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients. Chin J Cancer Res 24(4):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Liu P, Wang J et al (2021) Dauricine attenuates spatial memory impairment and alzheimer-like pathologies by enhancing mitochondrial function in a mouse model of Alzheimer’s disease. Front Cell Dev Biol 8:624339

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lin Z, He T et al (2022) Topical application of tetrandrine nanoemulsion promotes the expansion of CD4+Foxp3+ regulatory T cells and alleviates imiquimod-induced psoriasis in mice. Front Immunol 13:800283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Zhu Y, Zhang Y et al (2021) Tetrandrine attenuates intestinal epithelial barrier defects caused by colitis through promoting the expression of occludin via the AhR-miR-429 pathway. FASEB J 35(5):e21502

    Article  CAS  PubMed  Google Scholar 

  • Desgrouas C, Chapus C, Desplans J et al (2014a) In vitro antiplasmodial activity of cepharanthine. Malar J 13:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Desgrouas C, Dormoi J, Chapus C et al (2014b) In vitro and in vivo combination of cepharanthine with anti-malarial drugs. Malar J 13:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenbarth GS, Gottlieb PA (2004) Autoimmune polyendocrine syndromes. N Engl J Med 350(20):2068–2079

    Article  CAS  PubMed  Google Scholar 

  • Ershun Z, Yunhe F, Zhengkai W et al (2014) Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway. Inflammation 37(2):331–337

    Article  PubMed  Google Scholar 

  • Fan HH, Wang LQ, Liu WL et al (2020) Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl) 133(9):1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Fang ZH, Li YJ, Chen Z et al (2013) Inhibition of signal transducer and activator of transcription 3 and cyclooxygenase-2 is involved in radiosensitization of cepharanthine in HeLa cells. Int J Gynecol Cancer 23(4):608–614

    Article  PubMed  Google Scholar 

  • Feng F, Pan L, Wu J et al (2021) Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int J Biol Sci 17(15):4340–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Li X, Ding X et al (2017) Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells. Cell Physiol Biochem 41(4):1633–1648

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SB, Supko JG, Neal JW et al (2012) A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J Thorac Oncol 7(10):1602–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong S, Xu D, Zou F et al (2017) (-)-Curine induces cell cycle arrest and cell death in hepatocellular carcinoma cells in a p53-independent way. Biomed Pharmacother 89:894–901

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Takahashi K (1949) The effect of cepharanthine on pertussis. Jpn J Exp Med 20(2):229–234

    CAS  PubMed  Google Scholar 

  • He CL, Huang LY, Wang K et al (2021) Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduct Target Ther 6(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hifumi T, Yamamoto A, Morokuma K et al (2011) Surveillance of the clinical use of mamushi (Gloydius blomhoffii) antivenom in tertiary care centers in Japan. Jpn J Infect Dis 64(5):373–376

    Article  PubMed  Google Scholar 

  • Ho LJ, Chang DM, Lee TC et al (1999) Plant alkaloid tetrandrine downregulates protein kinase C-dependent signaling pathway in T cells. Eur J Pharmacol 367(2–3):389–398

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chen R, An J et al (2021) Dauricine attenuates vascular endothelial inflammation through inhibiting NF-κB pathway. Front Pharmacol 12:758962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua P, Sun M, Zhang G et al (2015) Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem Biophys Res Commun 460(2):136–142

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Hu G, Wang C et al (2014) Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation. 37(1):235–46

    Article  CAS  PubMed  Google Scholar 

  • Huber A, Menconi F, Corathers S et al (2008) Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev 29(6):697–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inui S, Itami S (2013) Induction of insulin-like growth factor-I by cepharanthine from dermal papilla cells: a novel potential pathway for hair growth stimulation. J Dermatol 40(12):1054–1055

    Article  CAS  PubMed  Google Scholar 

  • Jacobson DL, Gange SJ, Rose NR et al (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84(3):223–243

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RC, Weetman AP (2002) Disease associations with autoimmune thyroid disease. Thyroid 12(11):977–988

    Article  PubMed  Google Scholar 

  • Jiang L, Hou R (2020) Tetrandrine reverses paclitaxel resistance in human ovarian cancer via inducing apoptosis, cell cycle arrest through β-catenin pathway. Onco Targets Ther 13:3631–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun MY, Karki R, Paudel KR et al (2021) Liensinine prevents vascular inflammation by attenuating inflammatory mediators and modulating VSMC function. Appl Sci 11(1):386

    Article  CAS  Google Scholar 

  • Karvonen M, Viik-Kajander M, Moltchanova E et al (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 23(10):1516–26

    Article  CAS  PubMed  Google Scholar 

  • Kikukawa Y, Okuno Y, Tatetsu H et al (2008) Induction of cell cycle arrest and apoptosis in myeloma cells by cepharanthine, a biscoclaurine alkaloid. Int J Oncol 33(4):807–814

    CAS  PubMed  Google Scholar 

  • Leite FC, Ribeiro-Filho J, Costa HF et al (2014) Curine, an alkaloid isolated from Chondrodendron platyphyllum inhibits prostaglandin E2 in experimental models of inflammation and pain. Planta Med 80(13):1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Li CW, Menconi F, Osman R et al (2016) Identifying a small molecule blocking antigen presentation in autoimmune thyroiditis. J Biol Chem 291(8):4079–4090

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen X, Zhou SJ (2018) Dauricine combined with clindamycin inhibits severe pneumonia co-infected by influenza virus H5N1 and Streptococcus pneumoniae in vitro and in vivo through NF-κB signaling pathway. J Pharmacol Sci 137(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chou H, Li L et al (2020) Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and nrf-2 pathway. Artif Cells Nanomed Biotechnol 48(1):96–106

    Article  PubMed  Google Scholar 

  • Li H, Gao L, Min J et al (2021a) Neferine suppresses autophagy-induced inflammation, oxidative stress and adipocyte differentiation in Graves’ orbitopathy. J Cell Mol Med 25(4):1949–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu W, Chen Y et al (2021b) Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief Bioinform 22(2):1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Li CW, Osman R, Menconi F et al (2021c) Cepharanthine blocks presentation of thyroid and islet peptides in a novel humanized autoimmune diabetes and thyroiditis mouse model. Front Immunol 12:796552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Qiao K, Xu X et al (2022a) Cepharanthine regulates autophagy via activating the p38 signaling pathway in lung adenocarcinoma cells. Anticancer Agents Med Chem 22(8):1523–1529

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang Y, Zhang J et al (2022b) Neferine exerts ferroptosis-inducing effect and antitumor effect on thyroid cancer through Nrf2/HO-1/NQO1 inhibition. J Oncol 2022:7933775

    PubMed  PubMed Central  Google Scholar 

  • Li HL, Cheng Y, Zhou ZW et al (2022c) Isoliensinine induces cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway. Oncol Lett 23(1):8

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Wang S, Wang L et al (2020) Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 157:104846

    Article  CAS  PubMed  Google Scholar 

  • Liao YH, Li CI, Lin CC et al (2017) Traditional Chinese medicine as adjunctive therapy improves the long-term survival of lung cancer patients. J Cancer Res Clin Oncol 143(12):2425–2435

    Article  PubMed  Google Scholar 

  • Lippert TH, Ruoff HJ, Volm M (2008) Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 58(6):261–4

    CAS  PubMed  Google Scholar 

  • Liu QN, Zhang L, Gong PL et al (2010) Daurisoline suppressed early afterdepolarizations and inhibited L-type calcium current. Am J Chin Med 38(1):37–49

    Article  PubMed  Google Scholar 

  • Liu P, Chen X, Zhou H et al (2018) The isoquinoline alkaloid dauricine targets multiple molecular pathways to ameliorate alzheimer-like pathological changes in vitro. Oxid Med Cell Longev 2018:2025914

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen L, Liu W et al (2021a) Cepharanthine suppresses herpes simplex virus type 1 replication through the downregulation of the PI3K/Akt and p38 MAPK signaling pathways. Front Microbiol 12:795756

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tang Q, Rao Z et al (2021b) Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antiviral Res 193:105143

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Gu R, Huang Q et al (2022) Isoliensinine suppresses osteoclast formation through NF-κB signaling pathways and relieves ovariectomy-induced bone loss. Front Pharmacol 13:870553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu J, Yang EJ, Head SA et al (2017) Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth. Cancer Lett 409:91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda K, Hattori S, Komizu Y et al (2014) Cepharanthine inhibited HIV-1 cell-cell transmission and cell-free infection via modification of cell membrane fluidity. Bioorg Med Chem Lett 24(9):2115–2117

    Article  CAS  PubMed  Google Scholar 

  • Medeiros MA, Pinho JF, De-Lira DP et al (2011) Curine, a bisbenzylisoquinoline alkaloid, blocks L-type Ca2+ channels and decreases intracellular Ca2+ transients in A7r5 cells. Eur J Pharmacol 669(1–3):100–107

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HG, Yang JC, Kung HJ et al (2014) Targeting autophagy overcomes enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene 33(36):4521–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi H, Watashi K, Saso W et al (2021) Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience. 24(4):102367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto M, Ono M, Baba M (1998) Potent inhibition of HIV type 1 replication by an antiinflammatory alkaloid, cepharanthine, in chronically infected monocytic cells. AIDS Res Hum Retroviruses 14(14):1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Ono M, Baba M (2001) Suppression of cytokine production and neural cell death by the anti-inflammatory alkaloid cepharanthine: a potential agent against HIV-1 encephalopathy. Biochem Pharmacol 62(6):747–753

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13(12):691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onishi H, Katano M (2011) Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci 102(10):1756–1760

    Article  CAS  PubMed  Google Scholar 

  • Park M, Han J, Lee HJ (2020a) Anti-adipogenic effect of neferine in 3T3-L1 cells and primary white adipocytes. Nutrients 12(6):1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Gholam Zadeh M, Suh JH et al (2020b) Dauricine protects from LPS-Induced bone loss via the ROS/PP2A/NF-κB axis in osteoclasts. Antioxidants (basel) 9(7):588

    Article  CAS  PubMed  Google Scholar 

  • Payon V, Kongsaden C, Ketchart W et al (2019) Mechanism of cepharanthine cytotoxicity in human ovarian cancer cells. Planta Med 85(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam SS, O’Byrne K, Boyer M et al (2016) Dacomitinib versus erlotinib in patients with EGFR-mutated advanced nonsmall-cell lung cancer (NSCLC): pooled subset analyses from two randomized trials. Ann Oncol 27(7):1363

    Article  CAS  PubMed  Google Scholar 

  • Rattanawong A, Payon V, Limpanasittikul W et al (2018) Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol Rep 39(1):227–238

    CAS  PubMed  Google Scholar 

  • Roett MA, Evans P (2009) Ovarian cancer: an overview. Am Fam Physician 80(6):609–616

    PubMed  Google Scholar 

  • Rogosnitzky M, Danks R (2011) Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol Rep 63(2):337–347

    Article  CAS  PubMed  Google Scholar 

  • Sengking J, Oka C, Wicha P et al (2021) Neferine protects against brain damage in permanent cerebral ischemic rat associated with autophagy suppression and AMPK/mTOR regulation. Mol Neurobiol 58(12):6304–6315

    Article  CAS  PubMed  Google Scholar 

  • Shen LW, Jiang XX, Li ZQ et al (2022) Cepharanthine sensitizes human triple negative breast cancer cells to chemotherapeutic agent epirubicin via inducing cofilin oxidation-mediated mitochondrial fission and apoptosis. Acta Pharmacol Sin 43(1):177–193

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Yang Z, Xu Y et al (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Su GF, Huang ZX, Huang DL et al (2022) Cepharanthine hydrochloride inhibits the Wnt/β-catenin/hedgehog signaling axis in liver cancer. Oncol Rep 47(4):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Takahata M, Hashino S, Fujimoto K et al (2012) Clinical efficacy of high-dose cepharanthine for idiopathic thrombocytopenic purpura: retrospective multicenter analysis. Rinsho Ketsueki 53(12):1983–1990

    PubMed  Google Scholar 

  • Tamatani T, Azuma M, Motegi K et al (2007) Cepharanthineharanthin-enhanced radiosensitivity through the inhibition of radiation-induced nuclear factor-kappaB activity in human oral squamous cell carcinoma cells. Int J Oncol 31(4):761–768

    CAS  PubMed  Google Scholar 

  • Tang ZH, Cao WX, Guo X et al (2018) Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cell lung cancer. Cancer Lett 412:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tobin MK, Bonds JA, Minshall RD et al (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34(10):1573–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyama M, Hamasaki T, Uto T et al (2012) Synergistic inhibition of HTLV-1-infected cell proliferation by combination of cepharanthine and a tetramethylnaphthalene derivative. Anticancer Res 32(7):2639–2645

    CAS  PubMed  Google Scholar 

  • Tsai SC, Wu WC, Yang JS (2021) Tetrandrine inhibits epithelial-mesenchymal transition in IL-6-induced HCT116 human colorectal cancer cells. Onco Targets Ther 14:4523–4536

    Article  PubMed  PubMed Central  Google Scholar 

  • van Andel H, Kocemba KA, Spaargaren M et al (2019) Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia 33(5):1063–1075

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ci X, Lv H et al (2016) Isotetrandrine ameliorates tert-butyl hydroperoxide-induced oxidative stress through upregulation of heme oxygenase-1 expression. Exp Biol Med (Maywood) 241(14):1568–1576

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Luo R, Zhang M et al (2020a) A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection. Cell Death Dis 11(12):1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Su GF, Huang ZX et al (2020b) Cepharanthine hydrochloride induces mitophagy targeting GPR30 in hepatocellular carcinoma (HCC). Expert Opin Ther Targets 24(4):389–402

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Pu Z, Li M et al (2020c) Antioxidative and antiapoptosis: neuroprotective effects of dauricine in Alzheimer’s disease models. Life Sci 243:117237

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yue W, Lang H et al (2021) Resuming sensitivity of tamoxifen-resistant breast cancer cells to tamoxifen by tetrandrine. Integr Cancer Ther 20:1534735421996822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HG, Zhang MN, Wen X et al (2022) Cepharanthine ameliorates dextran sulphate sodium-induced colitis through modulating gut microbiota. Microb Biotechnol 15(8):2208–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei XY, Long JD, Chai JR et al (2022) Antinociceptive activities and mechanism of action of cepharanthine. Biochem Biophys Res Commun 614:219–224

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Zhang L, Liu Q et al (2022) Screening and identification of HTNVpv entry inhibitors with high-throughput pseudovirus-based chemiluminescence. Virol Sin 37(4):531–537

  • White MA, Lin W, Cheng X (2020) Discovery of COVID-19 inhibitors targeting the SARS-CoV2 Nsp13 helicase. bioRxiv [Preprint]. 2020.08.09.243246

  • William E, Joseph A, Hong Dixon et al (2021) Pharmaceutical salt forms of cepharanthine and tetrandrine[P] . US 10, 576, 077 B2

  • Wu X, Guo Y, Min X et al (2018) Neferine, a bisbenzylisoquinoline alkaloid, ameliorates dextran sulfate sodium-induced ulcerative colitis. Am J Chin Med 46(6):1263–1279

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Cao Y, Wang S et al (2019) Cepharanthine promotes the effect of dexmedetomidine on the deposition of β-amyloid in the old age of the senile dementia rat model by regulating inflammasome expression. Folia Neuropathol 57(4):348–356

    Article  PubMed  Google Scholar 

  • Wu XL, Deng MZ, Gao ZJ et al (2020) Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int Immunopharmacol 84:106559

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Li Y, Teng W et al (2019) Liensinine inhibits beige adipocytes recovering to white adipocytes through blocking mitophagy flux in vitro and in vivo. Nutrients 11(7):1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Shibuya A, Ishii S et al (2017) High-dose cepharanthine for pediatric chronic immune thrombocytopenia in Japan. Pediatr Int 59(3):303–308

    Article  CAS  PubMed  Google Scholar 

  • Yang C-C, Hung Y-L, Ko W-C et al (2021a) Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice. Int J Mol Sci 22:8237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang P, Huang C et al (2021b) Inhibitory effect on SARS-CoV-2 infection of neferine by blocking Ca2+ -dependent membrane fusion. J Med Virol 93(10):5825–5832

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Zhang C, Ni L et al (2022) Cepharanthine ameliorates chondrocytic inflammation and osteoarthritis via regulating the MAPK/NF-κB-autophagy pathway. Front Pharmacol 13:854239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda K, Moro M, Akasu M et al (1989) Pharmacokinetics of cepharanthinein phase I clinical trials (single and continuous intravenous administration). Jpn J Clin Pharmacol Ther 20(4):741–749

    Article  Google Scholar 

  • Ystgaard MB, Scheffler K, Suganthan R et al (2019) Neuromodulatory effect of NLRP3 and ASC in neonatal hypoxic ischemic encephalopathy. Neonatology 115(4):355–362

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Cheng X, Du Y et al (2015) Significance of MDR-related proteins in the postoperative individualized chemotherapy of gastric cancer. J Cancer Res Ther 11(1):46–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Tao J, Yang X et al (2014) Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 449(3):307–312

    Article  CAS  PubMed  Google Scholar 

  • Zhang TJ, Guo RX, Li X et al (2017) Tetrandrine cardioprotection in ischemia-reperfusion (I/R) injury via JAK3/STAT3/hexokinase II. Eur J Pharmacol 813:153–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie B, Zhang Z et al (2018) Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des Devel Ther 13:119–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YB, Fei HX, Guo J et al (2019) Dauricine suppresses the growth of pancreatic cancer in vivo by modulating the Hedgehog signaling pathway. Oncol Lett 18(5):4403–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang X, Guo Y et al (2021) Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. J Ethnopharmacol 25(268):113566

    Article  Google Scholar 

  • Zhang X, Zhang G, Zhao Z et al (2021b) Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy. Biochim Biophys Acta Mol Cell Res 1868(12):119132

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang JG, Mu W et al (2021c) The role of daurisoline treatment in hepatocellular carcinoma: inhibiting vasculogenic mimicry formation and enhancing sensitivity to sorafenib. Phytomedicine 92:153740

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu J, Wang C et al (2021d) Toll-like receptors gene polymorphisms in autoimmune disease. Front Immunol 12:672346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Huang W, Ren L et al (2022) Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res 32(1):9–23

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Piao X, Wu Y et al (2020) Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother 127:110151

    Article  CAS  PubMed  Google Scholar 

  • Zhou YB, Wang YF, Zhang Y et al (2012) In vitro activity of cepharanthine hydrochloride against clinical wild-type and lamivudine-resistant hepatitis B virus isolates. Eur J Pharmacol 683(1–3):10–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Zhang R, Wang Y et al (2017) Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget 8(67):111144–111160

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wu H, Hou J et al (2022) Daurisoline alleviated experimental colitis in vivo and in vitro: involvement of NF-κB and Wnt/β-catenin pathway. Int Immunopharmacol 108:108714

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ, Yu BY, Huang XK et al (2021) Neferine protects against hypoxic-ischemic brain damage in neonatal rats by suppressing NLRP3-mediated inflammasome activation. Oxid Med Cell Longev 2021:6654954

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (82260893), project supported by Gansu Provincial Department of Education (2022B-116), Gansu Province Industrial Support and Guidance Special Project (2020C-15), Natural Science Foundation of Gansu Province (20JR5RA180), Gansu Provincial Key Laboratory of Traditional Chinese Medicine Prescription Drug Mining and Innovation Transformation Open Fund (zyzx-2020-11), “Innovation Star” Project of Outstanding Graduate Students in Gansu Province (2022 CXZX-735).

Author information

Authors and Affiliations

Authors

Contributions

Liangliang Shi and Shuaizhe Wang contributed equally to this work. Wei Benjun and Liying Zhang: writing—review and editing. Wang Jiawei, Zhang Shangzu, Chen Yaping, Li Yangyang, Liu Zhiwei, Zhao Sichen: good suggestions were made on the revision of the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Benjun Wei or Liying Zhang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have their consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Wang, S., Zhang, S. et al. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. Naunyn-Schmiedeberg's Arch Pharmacol 396, 2843–2860 (2023). https://doi.org/10.1007/s00210-023-02537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02537-y

Keywords

Navigation