Skip to main content
Log in

Brain mapping: topography of neurons and their transmitters involved in various brain functions

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Use of the demanding techniques microdialysis or push-pull superfusion makes it possible to identify neurons in distinct brain areas involved in central control of peripheral functions, thus enabling brain mapping. Investigations with the push-pull superfusion technique have shown that mainly catecholaminergic neurons of the posterior and anterior hypothalamus, the locus coeruleus, and the nucleus of the solitary tract are of crucial importance for blood pressure regulation. Experimentally induced blood pressure changes also modify the release of histamine, glutamate, and taurine in the posterior hypothalamus and of serotonin in the locus coeruleus. Furthermore, histaminergic neurons of the nucleus accumbens are involved in memory, serotonergic neurons of the locus coeruleus in response to noxious stimuli, while nitric oxide of striatum has been implicated in neurotoxicity elicited by amphetamines. The involvement of several neurons in one brain function is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All relevant literature is cited. Sources of photographs are provided.

References

  • Acikgoz O, Gonenc S, Kayatekin BM, Pekçetin C, Uysal N, Dayi A, Semin I, Güre A (2000) The effects of single dose of methamphetamine on lipid peroxidation levels in the rat striatum and prefrontal cortex. Eur Neuropsychopharmacol 10:415–418

    Article  CAS  PubMed  Google Scholar 

  • Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199:183–189

    Article  CAS  PubMed  Google Scholar 

  • Bashkatova V, Philippu A (2019) Role of nitric oxide in psychostimulant-induced neurotoxicity. AIMS Neurosci 6: 191–203. https://doi.org/10.3934/Neuroscience.2019.3.191

  • Bashkatova V (2017) Involvement of nitric oxide in neurotoxicity produced by psychostimulant drugs. In: Philippu A (ed) In vivo neuropharmacology and neurophysiology. Springer Science+Business Media, New York, pp 409–424. https://doi.org/10.1007/978-1-4939-6490-1

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  • Carr WJ, Yee L, Gable D, Marasco E (1976) Olfactory recognition of conspecifics by domestic Norway rats. J Comp Physiol Psychol 90:821–828

    Article  CAS  PubMed  Google Scholar 

  • Dawson GR, Iversen SD (1993) The effects of novel cholinesterase inhibitors and selective muscarinic receptor agonists in tests of reference and working memory. Behav Brain Res 57:143–153

    Article  CAS  PubMed  Google Scholar 

  • De Jaeger X, Cammarota M, Prado MA, Izquierdo I, Prado VF, Pereira GS (2013) Decreased acetylcholine release delays the consolidation of object recognition memory. Behav Brain Res 238:62–68

    Article  PubMed  Google Scholar 

  • Dietl H, Eisert A, Kraus A, Philippu A (1981) The release of endogenous catecholamines in the cat hypothalamus is affected by spinal transection and drugs which change the arterial blood pressure. J Auton Pharmacol 1:279–286

    Article  CAS  PubMed  Google Scholar 

  • Ebner K, Rupniak NM, Saria A, Singewald N (2004) Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci U S A 23:4280–42805. https://doi.org/10.1073/pnas.0400794101

    Article  CAS  Google Scholar 

  • Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222. https://doi.org/10.1016/0166-2236(93)90159-j

    Article  CAS  PubMed  Google Scholar 

  • Hornick A, Philippu A (2016) Principles of stereotaxy in small animals. In: Philippu A (ed) In vivo neuropharmacology and neurophysiology. Springer USA, pp 3–14

  • Iliev A, Traykov V, Prodanov D, Mantchev G, Yakimova K, Krushkov I et al (1999) Effect of the acetylcholinesterase inhibitor galanthamine on learning and memory in prolonged alcohol intake rat model of acetylcholine deficit. Methods Find Exp Clin Pharmacol 21:297–301

    Article  CAS  PubMed  Google Scholar 

  • Ingles JL, Beninger RJ, Jhamandas K, Boegman RJ (1993) Scopolamine injected into the rat amygdala impairs working memory in the double Y-maze. Brain Res Bull 32:339–344

    Article  CAS  PubMed  Google Scholar 

  • Kaehler ST, Philippu A, Singewald N (1999a) Effects of local MAO inhibition in the locus coeruleus on extracellular serotonin and 5-HIAA during exposure to sensory and cardiovascular stimuli. Naunyn-Schmiedeberg’s Arch Pharmacol 359:187–193

    Article  CAS  Google Scholar 

  • Kaehler ST, Singewald N, Philippu A (1999b) Release of serotonin in the locus coeruleus of normotensive and spontaneously hypertensive rats (SHR). Naunyn-Schmiedeberg’s Arch Pharmacol 359:460–546

    Article  CAS  Google Scholar 

  • Kaehler ST, Singewald N, Sinner C, Thurnher C, Philippu A (2000) Conditioned fear and inescapable shock modify the release of serotonin in the locus coeruleus. Brain Res 859:249–254

    Article  CAS  PubMed  Google Scholar 

  • Kanwal I, Afshan S, Sadia GB, Sumbul Z (2020) Substance P: a neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 79: 101993. https://doi.org/10.1016/j.npep.2019.101993

  • Klausmair A, Philippu A (1989) Carotid occlusion increases the release of endogenous GABA in the nucleus of the solitary tract. Naunyn-Schmiedeberg’s Arch Pharmacol 340:764–766

    Article  CAS  Google Scholar 

  • Klausmair A, Singewald N, Philippu A (1991) Release of endogenous catecholamines in two different regions of the nucleus of the solitary tract as influenced by carotid occlusion. Naunyn-Schmiedeberg’s Arch Pharmacol 343:155–160

    Article  CAS  Google Scholar 

  • Kobilansky C, Lanzinger I, Philippu A (1988) Release of endogenous catecholamines in the nucleus tractus solitarii during experimentally induced blood pressure changes. Naunyn-Schmiedeberg’s Arch Pharmacol 337:125–130

    Article  CAS  Google Scholar 

  • Köhler CA, da Silva WC, Benetti F (2011). Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011: 328602. https://doi.org/10.1155/2011/328602

  • Kouvelas D, Singewald N, Kaehler ST, Philippu A (2006) Sinoaortic denervation abolishes blood pressure-induced GABA release in the locus coeruleus of conscious rats. Neurosci Lett 393:194–199

    Article  CAS  PubMed  Google Scholar 

  • Kraus MM, Philippu A (2015) Use of push-pull superfusion technique for identifying neurotransmitters involved in brain functions: achievements and perspectives. Curr Neuropharmacol 13:819–829. https://doi.org/10.2174/1570159X13666150722233149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus MM, Prast H, Philippu A (2013) Facilitation of short-term memory by histaminergic neurons in the nucleus accumbens is independent of cholinergic and glutamatergic transmission. Br J Pharmacol 170:214–221. https://doi.org/10.1111/bph.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21:361–374

    Article  CAS  PubMed  Google Scholar 

  • Nakazato E, Yamamoto T, Ohno M, Watanabe S (2000) Cholinergic and glutamatergic activation reverses working memory failure by hippocampal histamine H1 receptor blockade in rats. Life Sci 67:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Oishi R, Itoh Y, Nishibori M, Saeki K (1985) Decrease in histamine turnover in the brain of spontaneously hypertensive rats. Brain Res 343:180–183. https://doi.org/10.1016/0006-8993(85)91175-8

    Article  CAS  PubMed  Google Scholar 

  • Philippu A (2016) Nitric oxide: a universal modulator of brain function. Curr Med Chem 23:2643–2652

    Article  CAS  PubMed  Google Scholar 

  • Philippu A, Kraus MM (2016) Push-pull superfusion: a technique for investigating involvement of neurotransmitters in brain function. In: Philippu A (ed) In vivo neuropharmacology and neurophysiology. Springer, USA, pp 209–236

    Google Scholar 

  • Philippu A, Prast H (2001) Importance of histamine in modulatory processes, locomotion and memory. Behav Brain Res 124:151–159

    Article  CAS  PubMed  Google Scholar 

  • Philippu A, Wiedemann K (1981) Hypothalamic superfusion with histamine agonists and antagonists modifies the pressor response to hypothalamic stimulation. J Auton Pharmacol 1:111–117

    Article  CAS  PubMed  Google Scholar 

  • Philippu A, Dietl H, Sinha JN (1979) In vivo release of endogenous catecholamines in the hypothalamus. Naunyn-Schmiedeberg’s Arch Pharmacol 308:137–142

    Article  CAS  Google Scholar 

  • Philippu A, Dietl H, Eisert A (1981) Hypertension alters the release of catecholamines in the hypothalamus of the conscious rabbit. Eur J Pharmacol 69:519–523

    Article  CAS  PubMed  Google Scholar 

  • Philippu A, Hagen R, Hanesch U, Waldmann U (1983) Changes in the arterial blood pressure increase the release of endogenous histamine in the hypothalamus of anaesthetized cats. Naunyn-Schmiedeberg’s Arch Pharmacol 323:162–167

    Article  CAS  Google Scholar 

  • Philippu A (1984) Use of push-pull cannulae to determine the release of endogenous neurotransmitters in distinct brain areas of anaesthetized and freely moving animals. In: Marsden CA (ed) Measurement of neurotransmitter release. John Wiley, Chichester, pp 3-37

  • Prast H, Philippu A (1991) Does brain histamine contribute to the development of hypertension in spontaneously hypertensive rats? Naunyn Schmiedebergs Arch Pharmacol 343:307–310. https://doi.org/10.1007/BF00251131

    Article  CAS  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  • Prast H, Gujrati V, Walser S, Philippu A (1988) (1988) Histamine, histidine decarboxylase and histamine-N-methyltransferase in brain areas of spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 338(5):573–576. https://doi.org/10.1007/BF00179332

    Article  CAS  PubMed  Google Scholar 

  • Prast H, Fischer H, Werner E, Werner-Felmayer G, Philippu A (1995) Nitric oxide modulates the release of acetylcholine in the ventral striatum of the freely moving rat. Naunyn Schmiedebergs Arch Pharmacol 352:67–73

    Article  CAS  PubMed  Google Scholar 

  • Prast H, Argyriou A, Philippu A (1996) Histaminergic neurons facilitate social memory in rats. Brain Res 734:316–318

    Article  CAS  PubMed  Google Scholar 

  • Provensi G, Costa A, Izquierdo I, Blandina P, Passani MB (2020) Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br J Pharmacol 177:539–556. https://doi.org/10.1111/bph.14478

    Article  CAS  PubMed  Google Scholar 

  • Robinson RL, Dietl H, Bald M, Kraus A, Philippu A (1983) Effects of short-lasting and long-lasting blood pressure changes on the release of endogenous catecholamines in the hypothalamus of conscious, freely moving rabbit. Naunyn-Schmiedeberg’s Arch Pharmacol 322:203–209

    Article  CAS  Google Scholar 

  • Rush DK (1998) Scopolamine amnesia of passive avoidance: a deficit of information acquisition. Behav Neural Bol 50:255–274

    Article  Google Scholar 

  • Singewald N, Philippu A (1993) Catecholamine release in the locus coeruleus is modified by experimentally induced changes in haemodynamics. Naunyn-Schmiedeberg’s Arc Pharmacol 347:21–27

    CAS  Google Scholar 

  • Singewald N, Klausmair A, Philippu A (1992) Blood pressure changes modify the release rates of catecholamines in the intermediate nucleus of the solitary tract. Naunyn-Schmiedeberg’s Arch Pharmacol 345:176–180

    Article  CAS  Google Scholar 

  • Singewald N, Chen F, Guo LY, Philippu A (1995) Ionic and haemodynamic changes influence the release of the excitatory amino acid glutamate in the posterior hypothalamus. Naunyn-Schmiedeberg’s Arch Pharmacol 352:620–625

    Article  CAS  Google Scholar 

  • Singewald N, Kaehler S, Hemeida R, Philippu A (1997) Release of serotonin in the rat locus coeruleus: effects of cardiovascular, stressful and noxious stimuli. Eur J Neurosci 9:556–562

    Article  CAS  PubMed  Google Scholar 

  • Singewald N, Kaehler ST, Hemeida R, Philippu A (1998) Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. Br J Pharmacol 123:746–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singewald N, Kouvelas D, Kaehler ST, Sinner (2000) Peripheral chemoreceptor activation enhances the release of 5-hydroxytryptamine in the locus coeruleus of the conscious rat. Neuosci Let 289: 17-20

  • Sinha JN, Dietl H, Philippu A (1980) Effect of a fall of blood pressure on the release of catecholamines in the hypothalamus. Life Sci 26:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Sinner C, Kaehler ST, Philippu A, Singewald N (2001) Role of nitric oxide in the stress-induced release of serotonin in the locus coeruleus. Naunyn Schmiedeberg’s Arch Pharmacol 364:105–109

    Article  CAS  Google Scholar 

  • Thor DH, Holloway WR (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96:1000–1006

    Article  Google Scholar 

  • Tilson HA, Sparber SB (1970a) On the use of the push-pull cannula as a means of measuring biochemical changes during ongoing behavior. Behav Res Meth Instru 2:131–134. https://doi.org/10.3758/BF03211022

    Article  Google Scholar 

  • Tilson HA, Sparber SB (1970b) Studies on the concurrent behavioral and neurochemical effects of psychoactive drugs using the push-pull cannula. J Pharmacol Exp Ther 181:387–398

    Google Scholar 

  • Zlomuzica A, Ruocco LA, Sadile AG, Huston JP, Dere E (2009) Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br J Pharmacol 157:86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This experimental work of the author mentioned in this review was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Austrian Fonds zur Wissenschaftlichen Forschung (FWF).

Author information

Authors and Affiliations

Authors

Contributions

The author did all of it. The authors declare that no paper mill was used.

Corresponding author

Correspondence to Athineos Philippu.

Ethics declarations

Ethics approval

All animal care and experimental protocols were approved by the Kommission für Tierversuchsangelegenheiten, Bundesministerium für Wissenschaft, Forschung und Kunst, Austria. All procedures used were as humane as possible. The ARRIVE guidelines for reporting experiments involving animals have been followed.

Competing interests

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Zusatzmaterial 1 (DOCX 228 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippu, A. Brain mapping: topography of neurons and their transmitters involved in various brain functions. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1415–1422 (2023). https://doi.org/10.1007/s00210-023-02523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02523-4

Keywords

Navigation