Skip to main content

Advertisement

Log in

Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC)

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This document includes citations for all the data that were analyzed throughout the literature review.

References

  • Abdelaziz H, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM et al (2018) Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 269:374–392

    Article  CAS  PubMed  Google Scholar 

  • Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY et al (2014) A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 74:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Faraj A, Shaik AS, Halwani R, Alfuraih A (2016) Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: noninvasive monitoring using magnetic resonance imaging. Mol Imag Biol 18:315–324

    Article  CAS  Google Scholar 

  • Al-Hallak KM, Azarmi S, Anwar-Mohamed A, Roa WH, Löbenberg R (2010) Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy? Eur J Pharm Biopharm 76:112–119

    Article  CAS  PubMed  Google Scholar 

  • Allouche J (2013) Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. In: Brayner R, Fiévet F, Coradin T (eds) Nanomaterials: a danger or a promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_2

  • Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A et al (2018) Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 14:373–384

    Article  CAS  PubMed  Google Scholar 

  • Arya N, Arora A, Vasu KS, Sood AK, Katti DS (2013) Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 5(7):2818–2829

    Article  CAS  PubMed  Google Scholar 

  • Asadollahi L, Mahoutforoush A, Dorreyatim SS, Soltanfam T, Paiva-Santos AC, Peixoto D, Veiga F, Hamishehkar H, Zeinali M, Abbaspour-Ravasjani S (2022) Co-delivery of erlotinib and resveratrol via nanostructured lipid carriers: a synergistically promising approach for cell proliferation prevention and ROS-Mediated apoptosis activation. Int J Pharm 25(624):122027

    Article  Google Scholar 

  • Ashique S, Sandhu NK, Chawla V, Chawla PA (2021) Targeted drug delivery: trends and perspectives. Current Drug Deliv 18(10):1435–1455

    Article  CAS  Google Scholar 

  • Ashique S, Almohaywi B, Haider N, Yasmin S, Hussain A, Mishra N, Garg A (2022a) siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Advances in Cancer Biol-Metast 4(2022):100047

  • Ashique S, Upadhyay A, Kumar N, Chauhan S, Mishra N (2022b) Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery-A review. Adv Cancer Biol-Metast 4(2022):100041

  • Banchereau J, Palucka K (2018) Cancer vaccines on the move. Nature Rev Clinical Oncol 15(1):9–10

    Article  Google Scholar 

  • Barash O et al (2012) Classification of lung cancer histology by gold nanoparticle sensors. Nanomed 8(5):580–589

    Article  CAS  Google Scholar 

  • Barenholz YC (2012) Doxil®—the first FDA-approved nano-drug: Lessons learned. J Controlled Rel 160(2):117–134

    Article  CAS  Google Scholar 

  • Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM (2014) Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Human Vaccine Immunother 10(2):321–332

    Article  CAS  Google Scholar 

  • Børresen B, Hansen AE, Fliedner FP, Henriksen JR, Elema DR, Brandt-Larsen M, Kristensen LK, Kristensen AT, Andresen TL, Kjær A (2020) Noninvasive molecular imaging of the enhanced permeability and retention effect by 64Cu-liposomes: in vivo correlations with 68Ga-RGD, fluid pressure, diffusivity and 18F-FDG. Int J Nanomed 15:8571

    Article  Google Scholar 

  • Burstein HJ, Schwartz RS (2008) Molecular origins of cancer New England J Med 358(5):527

    Article  CAS  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  • Chen Y, Yang L, Feng C, Wen LP (2005) Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem Biophysical Res Commun 337(1):52–60

    Article  CAS  Google Scholar 

  • Chen YH et al (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Lai X, Song S, Zhu X, Zhu J (2016) Nanostructured lipid carriers based temozolomide and gene co-encapsulated nanomedicine for gliomatosis cerebri combination therapy. Drug Deliv 23(4):1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Huang TH, Elzoghby AO, Wang PW, Chang CW, Fang JY (2017b) Squarticles as the nano antidotes to sequester the overdosed antidepressant for detoxification. Int J Nanomed 12:8071

    Article  CAS  Google Scholar 

  • Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, Pang S, Lei L, Ji J, Wang B (2018) Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. Nanoscale 10(45):20946–20962

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang W, Zhu G, Xie J, Chen X (2017a) Rethinking cancer nanotheranostics. Nature Revi Mat 9 2 (7):1–8

  • Cheng L, Huang FZ, Cheng LF, Zhu YQ, Hu Q, Li L, Wei L, Chen DW (2014) GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomed 9:921

    Article  Google Scholar 

  • Choi YH, Han HK (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Invest 48(1):43–60

    Article  CAS  Google Scholar 

  • Choi SH, Jin SE, Lee MK, Lim SJ, Park JS, Kim BG, Ahn WS, Kim CK (2008) Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. European J Pharm Biopharm 68(3):545–554

    Article  CAS  Google Scholar 

  • ClinicalTrials.gov Identifier: NCT00020124 (2003)

  • ClinicalTrials.gov Identifier: NCT00006036 (2004)

  • ClinicalTrials.gov Identifier: NCT00199849 (2005)

  • ClinicalTrials.gov Identifier: NCT00277082 (2006)

  • ClinicalTrials.gov Identifier: NCT00442754 (2007)

  • ClinicalTrials.gov Identifier: NCT00503568 (2007)

  • ClinicalTrials.gov Identifier: NCT00654030 (2008)

  • ClinicalTrials.gov Identifier: NCT00676507 (2008)

  • ClinicalTrials.gov Identifier: NCT00729612 (2008)

  • ClinicalTrials.gov Identifier: NCT00960115 (2009)

  • ClinicalTrials.gov Identifier: NCT01023347 (2009)

  • ClinicalTrials.gov Identifier: NCT01051362 (2010)

  • ClinicalTrials.gov Identifier: NCT01159288 (2010)

  • ClinicalTrials.gov Identifier: NCT01219348 (2010)

  • ClinicalTrials.gov Identifier: NCT01620190 (2012)

  • ClinicalTrials.gov Identifier: NCT01720836 (2012)

  • ClinicalTrials.gov Identifier: NCT01789099 (2013)

  • ClinicalTrials.gov Identifier: NCT01792479 (2013)

  • ClinicalTrials.gov Identifier: NCT01853878 (2013)

  • ClinicalTrials.gov Identifier: NCT02283320 (2014)

  • ClinicalTrials.gov Identifier: NCT02470468 (2015)

  • ClinicalTrials.gov Identifier: NCT02654587 (2016)

  • ClinicalTrials.gov Identifier: NCT02667743 (2016)

  • ClinicalTrials.gov Identifier: NCT02818426 (2016)

  • ClinicalTrials.gov Identifier: NCT03164772 (2017)

  • ClinicalTrials.gov Identifier: NCT03289962 (2017)

  • ClinicalTrials.gov Identifier: NCT03548467 (2018)

  • ClinicalTrials.gov Identifier: NCT03948763 (2019)

  • ClinicalTrials.gov Identifier: NCT04078269 (2019)

  • Cortés‐Jofré M, Uranga R, Pombert AT, Prado MD, Aguirrechu IC, Pacheco C, Reyes RM, Chuecas F, Bermejo PI (2019) Therapeutic vaccines for advanced non‐small cell lung cancer. The Cochrane Database Systematic Rev 2019(8):CD013377

  • Cuppens K, Vansteenkiste J (2014) Vaccination therapy for non-small-cell lung cancer. Current Opin Oncol 26(2):165–170

    Article  CAS  Google Scholar 

  • Das M, Datir SR, Singh RP, Jain S (2013) Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol Pharma 10(7):2543–2557

    Article  CAS  Google Scholar 

  • Das SS, Tambe S, Prasad Verma PR, Amin P, Singh N, Singh SK, Gupta PK (2022) Molecular insights and therapeutic implications of nanoengineered dietary polyphenols for targeting lung carcinoma: part I. Nanomedicine 17(23):1799–1816

  • Devarajan P, Tarabishi R, Mishra J, Ma Q, Kourvetaris A, Vougiouka M, Boulikas T (2004) Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res 24(4):2193–2200

    CAS  PubMed  Google Scholar 

  • Ding M, Zeng X, He X, Li J, Tan H, Fu Q et al (2014) Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromol 15:2896–2906

    Article  CAS  Google Scholar 

  • DiSanto RM, Subramanian V, Gu Z (2015) Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomed Nanobiotechnol 7(4):548–564

    CAS  Google Scholar 

  • Dolatabadi JE, Valizadeh H, Hamishehkar H (2015) Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharmaceuti Bull 5(2):151

    Article  CAS  Google Scholar 

  • Dominguez-Martinez I, Joaquin-Ovalle F, Ferrer-Acosta Y, Griebenow KH (2022) Folate-decorated cross-linked cytochrome c nanoparticles for active targeting of non-small cell lung carcinoma (NSCLC). Pharmaceutics 14(3):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Men W, Yang S, Xu S (2020) Identification of lung adenocarcinoma biomarkers based on bioinformatic analysis and human samples. Oncol Rep 43:1437–1450. https://doi.org/10.3892/or.2020.7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dostalova S, Vasickova K, Hynek D, Krizkova S, Richtera L, Vaculovicova M, Eckschlager T, Stiborova M, Heger Z, Adam V (2017) Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomed 12:2265

    Article  CAS  Google Scholar 

  • Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, Poppiti R (2023) Drug repurposing in non-small cell lung carcinoma: old solutions for new problems. Current Oncol 30(1):704–719

    Article  Google Scholar 

  • Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Kumar NS, Vekariya RL (2010) A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 10(45):26777–26791

    Article  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  CAS  PubMed  Google Scholar 

  • Elzoghby AO (2013) Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 172:1075–1091

    Article  CAS  PubMed  Google Scholar 

  • Elzoghby O, A, M Abd-Elwakil M, Abd-Elsalam K, T Elsayed M, Hashem Y, Mohamed O, (2016) Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Current Pharma Design 22(22):3305–3323

    Article  CAS  Google Scholar 

  • Elzoghby AO, Vranic BZ, Samy WM, Elgindy NA (2015) Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm 491(1–2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Elzoghby AO, El-Lakany SA, Helmy MW, Abu-Serie MM, Elgindy NA (2017) Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomed 12(24):2785–2805

    Article  CAS  Google Scholar 

  • Esim O, Bakirhan NK, Yildirim N, Sarper M, Savaser A, Ozkan SA, Ozkan Y (2020) Development, optimization and in vitro evaluation of oxaliplatin loaded nanoparticles in non-small cell lung cancer. DARU J Pharm Sci 28(2):673–684

    Article  Google Scholar 

  • Fan Y, Yuan S, Huo M, Chaudhuri AS, Zhao M, Wu Z, Qi X (2017) Spatial controlled multistage nanocarriers through hybridization of dendrimers and gelatin nanoparticles for deep penetration and therapy into tumor tissue. Nanomed Nanotech, Biol Med 13(4):1399–410

    Article  CAS  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A (2017) Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    Article  Google Scholar 

  • Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochem Biotechn 165(7):1628–1651

    Article  CAS  Google Scholar 

  • Gaber M, Medhat W, Hany M, Saher N, Fang JY, Elzoghby A (2017) Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Controlled Rel 254:75–91

    Article  CAS  Google Scholar 

  • Garbuzenko OB, Kuzmov A, Taratula O, Pine SR, Minko T (2019) Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo-and gene therapy. Theranostics 9(26):8362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Fernández C, Fornaguera C, Borrós S (2020) Nanomedicine in non-small cell lung cancer: from conventional treatments to immunotherapy. Cancers 12(6):1609

    Article  PubMed  PubMed Central  Google Scholar 

  • Gou S, Yang J, Ma Y, Zhang X, Zu M, Kang T, Liu S, Ke B, Xiao B (2020) Multi-responsive nanococktails with programmable targeting capacity for imaging-guided mitochondrial phototherapy combined with chemotherapy. J Controlled Rel 327:371–383

    Article  CAS  Google Scholar 

  • Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F (2014a) Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomed 9:4107

    Google Scholar 

  • Han J, Wang Q, Zhang Z, Gong T, Sun X (2014b) Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small 10(3):524–535

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Li Y, Zhang P, Sun J, Li X, Sun X, Kong F (2016) Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharm Develop Technol 21(3):277–281

    Article  CAS  Google Scholar 

  • He Y, Du Z, Ma S, Liu Y, Li D, Huang H, Jiang S, Cheng S, Wu W, Zhang K, Zheng X (2016) Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomed 11:1879

    Article  CAS  Google Scholar 

  • Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M (2020) Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat?. Int J Nanomed 15:9469–9496

  • Hsu SH, Wen CJ, Al-Suwayeh SA, Huang YJ, Fang JY (2013) Formulation design and evaluation of quantum dot-loaded nanostructured lipid carriers for integrating bioimaging and anticancer therapy. Nanomed 8(8):1253–1269

    Article  CAS  Google Scholar 

  • Hu CM, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83(8):1104–1111

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Fu S, Peng Q, Han YW, Xie J, Zan N et al (2017) Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: in vitro and in vivo evaluation. Int J Pharm 516:313–322

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles:interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (lond) 2(5):681–693

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, Wang B, Feng Q, Zheng X, Gong M, Gong Q (2022) Targeted drug/gene/photodynamic therapy via a stimuli-responsive dendritic-polymer-based nanococktail for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Adv Mater 34(27):2201516

    Article  CAS  Google Scholar 

  • Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J (2012) Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Targeting 20(10):813–830

    Article  CAS  Google Scholar 

  • Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TB, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, Salm M (2017) Tracking the evolution of non–small-cell lung cancer. New Eng J Med 376(22):2109–2121

    Article  CAS  PubMed  Google Scholar 

  • Jeong JK, Gurunathan S, Kang MH, Han JW, Das J, Choi YJ, Kwon DN, Cho SG, Park C, Seo HG, Song H (2016) Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells. Scientific Rep 6(1):21688

    Article  CAS  Google Scholar 

  • Jiang ZM, Dai SP, Xu YQ, Li T, Xie J, Li C et al (2015) Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med Oncol 32:193

    Article  PubMed  Google Scholar 

  • Jing Y, Xiong X, Ming Y, Zhao J, Guo X, Yang G, Zhou S (2018) A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv Healthcare Mat 7(7):1700974

    Article  Google Scholar 

  • Joshi N, Shirsath N, Singh A, Joshi KS, Banerjee R (2014) Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep 4(1):1–1

    Article  Google Scholar 

  • Jung J, Park SJ, Chung HK, Kang HW, Lee SW, Seo MH et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:e77-83

    Article  CAS  PubMed  Google Scholar 

  • Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomat 85:152–167

    Article  CAS  Google Scholar 

  • Kedmi R, Ben-Arie N, Peer D (2010) The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomat 31(26):6867–6875

    Article  CAS  Google Scholar 

  • Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS et al (2007) Multicenter phase II trial of Genexol-PM, a novel cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014

    Article  PubMed  Google Scholar 

  • Kim SW, Lee YK, Lee JY, Hong JH, Khang D (2017) PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnol 28(46):465102

    Article  Google Scholar 

  • Kim SS, Doherty C, Moghe M, Rait A, Pirollo KF, Harford JB, Chang EH (2022) Nanomedicine-based gene delivery for a truncated tumor suppressor RB94 promotes lung cancer immunity. Cancers 14(20):5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Harford JB, Moghe M, Doherty C, Chang EH (2022) A novel P53 nanomedicine reduces immunosuppression and augments anti-PD-1 therapy for non-small cell lung cancer in syngeneic mouse models. Cells 11(21):3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko S, Park JY, Oh YK (2019) A microbial siderophore-inspired self-gelling hydrogel for noninvasive anticancer phototherapy. Cancer Res 79(24):6178–6189

    Article  CAS  PubMed  Google Scholar 

  • Kotmakçı M, Çetintaş VB, Kantarcı AG (2017) Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells. Int J Pharmaceutics 525(1):101–111

    Article  Google Scholar 

  • Lee WH, Loo CY, Traini D, Young PM (2015) Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci 10(6):481–489

    Article  Google Scholar 

  • Lee SY, Hong EH, Jeong JY, Cho J, Seo JH, Ko HJ, Cho HJ (2019) Esterase-sensitive cleavable histone deacetylase inhibitor-coupled hyaluronic acid nanoparticles for boosting anticancer activities against lung adenocarcinoma. Biomat Sci 7(11):4624–4635

    Article  CAS  Google Scholar 

  • Li LP (2018) Cisplatin-loaded polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy. Chem Eur 3:13541–13781

    Google Scholar 

  • Li K, Zhang ZP, Luo M, Yu X, Han Y, Wei HP, Cui ZQ, Zhang XE (2012) Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4(1):188–193

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang XN, Li XD, Chang J (2016a) Multimodality imaging in nanomedicine and nanotheranostics. Cancer Bio Med 13(3):339

    Article  CAS  Google Scholar 

  • Li X, Zhang XN, Li XD, Chang J (2016b) Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biology Med 13(3):339

    Article  CAS  Google Scholar 

  • Li S, Chen L, Huang K, Chen N, Zhan Q, Yi K, Qi H, Liu C, Tan Y, Hou X, Lu Y (2019) Extracellular delivery: tumor microenvironment-tailored weakly cell-interacted extracellular delivery platform enables precise antibody release and function (Adv. Funct. Mater. 43/2019). Adv Funct Mat 29(43):1970301

    Article  Google Scholar 

  • Li K, Nguyen HG, Lu X, Wang Q (2020a) Viruses and their potential in bioimaging and biosensing applications. Analyst 135(1):21–27

    Article  Google Scholar 

  • Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, Qiao R, Ling D (2020b) Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J Control Release 322:566–592

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang Z, Deng H, Zheng Z (2021) Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer. Front Chem 9:637754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Zang X, Meng X, Li Y, Xie Y, Chen X (2022) Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment. Drug Delivery 29(1):970–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang R, Liu L, He H, Chen Z, Han Z, Luo Z, Wu Z, Zheng M, Ma Y, Cai L (2018) Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@ manganese dioxide to inhibit tumor growth and metastases. Biomat 177:149–160

    Article  CAS  Google Scholar 

  • Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64(9):826–835

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Zhang X, Chen H, Bian Z, Zhang G, Riaz MK, Tyagi D, Lin G, Zhang Y, Wang J, Lu A (2018) Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv 25(1):256–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu J, Chu L, Wang Y, Duan Y, Feng L, Yang C, Wang L, Kong D (2011) Novel peptide–dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomed 6:59

    CAS  Google Scholar 

  • Liu FC, Yu HP, Lin CY, Elzoghby AO, Hwang TL, Fang JY (2018) Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: the effect of nanovesicular surface charge. J Nanobiotechnol 16(1):1–4

    Article  Google Scholar 

  • Liu J, Li F, Zheng J, Li B, Zhang D, Jia L (2019) Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer. J Nanobiotech 17(1):1–6

    Article  Google Scholar 

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int 2014:180549

  • Lowery A, Onishko H, Hallahan DE, Han Z (2011) Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors. J Cont Rel 150(1):117–124

    Article  CAS  Google Scholar 

  • Lu J, Gu A, Wang W, Huang A, Han B, Zhong H (2022) Polymeric micellar paclitaxel (pm-Pac) prolonged overall survival for NSCLC patients without pleural metastasis. Int J Pharm 25(623):121961

    Article  Google Scholar 

  • Lu J, Lou Y, Zhang Y, Zhong R, Zhang W, Zhang X, Wang H, Chu T, Han B, Zhong H (2023) Paclitaxel has a reduced toxicity profile in healthy rats after polymeric micellar nanoparticle delivery. Int J Nanomed 31:263–276

    Article  Google Scholar 

  • Luo Y, Wang X, Du D, Lin Y (2015) Hyaluronic acid-conjugated apoferritin nanocages for lung cancer targeted drug delivery. Biomat Sci 3(10):1386–1394

    Article  CAS  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. New Eng J Med 350(21):2129–2139

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4:100164

    Article  Google Scholar 

  • Maja L, Željko K, Mateja P (2020) Sustainable technologies for liposome preparation. J Supercrit Fluids 165:104984

  • Makled S, Nafee N, Boraie N (2017) Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int J Pharm 517(1–2):312–321

    Article  CAS  PubMed  Google Scholar 

  • Mangal S, Gao W, Li T, Zhou QT (2017) Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 38(6):782–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattheolabakis G, Rigas B, Constantinides PP (2012) Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomed 7(10):1577–1590

    Article  CAS  Google Scholar 

  • McIntyre A, Ganti AK (2017) Lung cancer-a global perspective. J Surg Oncol 115(5):550–554

    Article  PubMed  Google Scholar 

  • Mei D, Zhao L, Chen B, Zhang X, Wang X, Yu Z et al (2018) a-Conotoxin Imi-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to a7-nAChR overexpressed non-small cell lung cancer. Drug Deliv 25:493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM (2018) Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 10(4):191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Res 42(6):463–478

    Article  CAS  Google Scholar 

  • Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D (2022) Targeting macrophage-mediated tumor cell phagocytosis: an overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol 1(103):108499

    Article  Google Scholar 

  • Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, Oberlies NH, Manikumar G, Wani MC, Grinstaff MW (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66(24):11913–11921

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Patra CR (2016) Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale 8(25):12444–12470

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP, Sreedhar B, Patra CR (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3):316

    Article  PubMed  PubMed Central  Google Scholar 

  • Mussi SV, Sawant R, Perche F, Oliveira MC, Azevedo RB, Ferreira LA, Torchilin VP (2014) Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells. Pharm Res 31(8):1882–1892

    Article  CAS  PubMed  Google Scholar 

  • Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen PV, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E (2022) In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. International Journal of Pharmaceutics: x 1(4):100139

    Google Scholar 

  • Noh MS, Jun BH, Kim S, Kang H, Woo MA, Minai-Tehrani A, Kim JE, Kim J, Park J, Lim HT, Park SC (2009) Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomat 30(23–24):3915–3925

    Article  CAS  Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2012) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharmaceutical Res 27(12):2569–2589

    Article  Google Scholar 

  • Pai-Scherf L, Blumenthal GM, Li H, Subramaniam S, Mishra-Kalyani PS, He K, Zhao H, Yu J, Paciga M, Goldberg KB, McKee AE (2017) FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. Oncologist 22(11):1392–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan A, Jakaria MG, Meenach SA, Bothun GD (2019) Radiofrequency and near-infrared responsive core–shell nanostructures using layersome templates for cancer treatment. ACS Appl Bio Mater 3(1):273–281

    Article  PubMed  Google Scholar 

  • Parajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC (2016) Potential application of dendrimers in drug delivery: a concise review and update. J Drug Deliv Therapeutics 6(2):71–88

    CAS  Google Scholar 

  • Park YI, Kwon SH, Lee G, Motoyama K, Kim MW, Lin M, Niidome T, Choi JH, Lee R (2021) pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J Controlled Rel 330:1–4

    Article  CAS  Google Scholar 

  • Patel AR, Chougule MB, Lim E, Francis KP, Safe S, Singh M (2014) Theranostic tumor homing nanocarriers for the treatment of lung cancer. Nanomed Nanotechnol, Biol Med 10(5):e1053-63

    Article  Google Scholar 

  • Patil SM, Sawant SS, Kunda NK (2021) Pulmonary delivery of bedaquiline-loaded cubosomes for non-small cell lung cancer (NSCLC) treatment. Drug Delivery to the Lungs, vol 32. https://ddl-conference.com/ddl2021/conference-papers/pulmonary-delivery-of-bedaquiline-loaded-cubosomes-for-non-small-cell-lung-cancer-nsclc-treatment/

  • Paul MK, Mukhopadhyay AK (2004) Tyrosine kinase–role and significance in cancer. Internat J Med Sci 1(2):101

    Article  CAS  Google Scholar 

  • Poonia N, Kharb R, Lather V, Pandita D (2016) Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sc OA 2(3):FSO135. https://doi.org/10.4155/fsoa-2016-0030

  • Razak A, Mohd SA, Gazzali A, Fisol FA, Abdulbaqi M, Parumasivam I, Mohtar T, N A Wahab H (2021) Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: an overview Cancers 13(3):400

  • Razzazan A, Atyabi F, Kazemi B, Dinarvand R (2016) In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mat Sci Engineering: C 62:614–625

    Article  CAS  Google Scholar 

  • Ren Q, Liang Z, Jiang X, Gong P, Zhou L, Sun Z, Xiang J, Xu Z, Peng X, Li S, Li W (2019) Enzyme and pH dual-responsive hyaluronic acid nanoparticles mediated combination of photodynamic therapy and chemotherapy. Int J Biol Macromol 130:845–852

    Article  CAS  PubMed  Google Scholar 

  • Reshma P, Unnikrishnan B, Preethi GU, Syama HP, Archana MG, Remya K et al (2019) Overcoming drug-resistance in lung cancer cell by paclitaxel loaded galactoxyloglucan nanoparticles. Int J Biol Macromol 136:266–274

    Article  CAS  PubMed  Google Scholar 

  • Rizvi NA, Riely GJ, Azzoli CG, Miller VA, Ng KK, Fiore J, Chia G, Brower M, Heelan R, Hawkins MJ, Kris MG (2008) Phase I/II trial of weekly intravenous 130-nm albumin-bound paclitaxel as initial chemotherapy in patients with stage IV non–small-cell lung cancer. J Clin Oncol 26(4):639–643

    Article  CAS  PubMed  Google Scholar 

  • Roa WH, Azarmi S, Al-Hallak MK, Finlay WH, Magliocco AM, Löbenberg R (2011) Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Controlled Rel 150(1):49–55

    Article  CAS  Google Scholar 

  • Roca E, Gurizzan C, Amoroso V, Vermi W, Ferrari V, Berruti A (2017) Outcome of patients with lung adenocarcinoma with transformation to small-cell lung cancer following tyrosine kinase inhibitors treatment: a systematic review and pooled analysis. Cancer Treatment Rev 59:117–122

    Article  CAS  Google Scholar 

  • Rochigneux P, Garcia AJ, Chanez B, Madroszyk A, Olive D, Garon EB (2020) Medical treatment of lung cancer: can immune cells predict the response? A Systematic Review Front Immunol 11:1036

    Article  CAS  PubMed  Google Scholar 

  • Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ (2013) Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mole Pharm 10(8):2986–2995

    Article  CAS  Google Scholar 

  • Sadhukha T, Wiedmann TS, Panyam J (2013a) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomat 34(21):5163–5171

    Article  CAS  Google Scholar 

  • Sadhukha T, Wiedmann TS, Panyam J (2013b) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171. https://doi.org/10.1016/j.biomaterials.2013.03.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PK, Mishra DK, Jain N, Rajoriya V, Jain AK (2015) Mannosylated solid lipid nanoparticles for lung-targeted delivery of paclitaxel. Drug Devel Industrial Pharmacy 41(4):640–649

    Article  CAS  Google Scholar 

  • Samad A, Jafar T, Rafi JH (2020) Identification of angiotensin-converting enzyme 2 (ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related lung cancer using computational analyses. Genomics 112:4912–4923. https://doi.org/10.1016/j.ygeno.2020.09.002

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Yañez C, Castro Rodriguez C (2020) Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials 13(3):570

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarvepalli S, Parvathaneni V, Chauhan G, Shukla SK, Gupta V (2022) Inhaled indomethacin-loaded liposomes as potential therapeutics against non-small cell lung cancer (NSCLC). Pharm Res 39(11):2801–2815

    Article  CAS  PubMed  Google Scholar 

  • Savla R, Garbuzenko OB, Chen S, Rodriguez-Rodriguez L, Minko T (2014) Tumor-targeted responsive nanoparticle-based systems for magnetic resonance imaging and therapy. Pharmaceutical Res 31(12):3487–3502

    Article  CAS  Google Scholar 

  • Scioli Montoto S, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 7:587997

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastian M, Papachristofilou A, Weiss C, Früh M, Cathomas R, Hilbe W, Wehler T, Rippin G, Koch SD, Scheel B, Fotin-Mleczek M (2014) Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer 14:1

    Article  Google Scholar 

  • Sebastian M, Von Boehmer L, Zippelius A, Mayer F, Reck M, Atanackovic D, Thomas M, Schneller F, Stoehlmacher J, Goekkurt E, Bernhard H, Groeschel A, Bals R, Schmidt S, Scheel B, Koch SD, Lander T. Kallen K, Knuth A (2011) Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial. J Clinical Oncol 29(15_suppl):2584

  • Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed Nanotechnol, Biol Med 6(5):662–71

    Article  CAS  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transd Targeted Therapy 3(1):1–9

    CAS  Google Scholar 

  • Seong GM, Hyun CL, Lee J, Kim C (2020) Large cell carcinoma of the lung presenting as diffuse pulmonary infiltrates with haemoptysis. Respirol Case Rep 8(7):e00632

    Article  Google Scholar 

  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6(286):1–13

  • Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2019) Enzyme responsive drug delivery systems in cancer treatment. J Controlled Rel 308:172–189

    Article  CAS  Google Scholar 

  • Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, He F, Zhao J (2015) Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomed 10:1223

    Article  CAS  Google Scholar 

  • Sharma A, Kim EJ, Shi H, Lee JY, Chung BG, Kim JS (2018) Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomat 155:145–151

    Article  CAS  Google Scholar 

  • Shen H, Shi S, Zhang Z, Gong T, Sun X (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5(7):755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi SJ, Zhong ZR, Liu J, Zhang ZR, Sun X, Gong T (2012) Solid lipid nanoparticles loaded with anti-microRNA oligonucleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharm Res 29(1):97–109

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017a) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017b) Cancer nanomedicine: progress, challenges and opportunities. Nature Rev Cancer 17(1):20–37

    Article  CAS  Google Scholar 

  • Shi M, Zhao X, Zhang J, Pan S, Yang C, Wei Y, Hu H, Qiao M, Chen D, Zhao X (2018) pH-responsive hybrid nanoparticle with enhanced dissociation characteristic for siRNA delivery. Internat J Nanomed 13:6885

    Article  CAS  Google Scholar 

  • Shih FY, Jiang WP, Lin X, Kuo SC, Huang GJ, Hou YC, Chang CS, Liu Y, Chiang YT (2020) A novel pH-tunable secondary conformation containing mixed micellar system in anticancer treatment. Cancers 12(2):503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla KS, Nguyen V, Goyal M, Gupta V (2022) Cationically modified inhalable nintedanib niosomes: enhancing therapeutic activity against non-small-cell lung cancer. Nanomedicine 17(13):935–958

  • Singh S, Nalwa HS (2007) Nanotechnology and health safety-toxicity and risk assessment of nanostructured material son human health. J Nanosci Nanotechnol 7:3048–3070

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Sachdev A, Gopinath P (2018) Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotech 18(3):1534–1541

    Article  CAS  Google Scholar 

  • Sivalingam D, Singh M (2023) Targeting the ACE2 receptor using nanomedicine: novel approach to lung cancer therapy. Trends in Immunotherapy 7(1):1–1

    Article  Google Scholar 

  • Sivarajakumar R, Mallukaraj D, Kadavakollu M, Neelakandan N, Chandran S, Bhojaraj S, Karri VV (2018) Nanoparticles for the treatment of lung cancers. J Young Pharmacists 10(3):276

    Article  CAS  Google Scholar 

  • Skubitz KM, Anderson PM (2000) Inhalational interleukin-2 liposomes for pulmonary metastases: a phase I clinical trial. Anticancer Drugs 11(7):555–563

    Article  CAS  PubMed  Google Scholar 

  • Socinski MA, Obasaju C, Gandara D, Hirsch FR, Bonomi P, Bunn P, Kim ES, Langer CJ, Natale RB, Novello S, Paz-Ares L (2016) Clinicopathologic features of advanced squamous NSCLC. J Thoracic Oncol 11(9):1411–1422

    Article  Google Scholar 

  • Song XL, Ju RJ, Xiao Y, Wang X, Liu S, Fu M, Liu JJ, Gu LY, Li XT, Cheng L (2017) Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomed 12:7433

    Article  CAS  Google Scholar 

  • SreeHarsha N, Maheshwari R, Al-Dhubiab BE, Tekade M, Sharma MC, Venugopala KN, Tekade RK, Alzahrani AM (2019) Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. Int J Nanomed 14:7419

    Article  CAS  Google Scholar 

  • Stabile L, Buonanno G, Ficco G, Scungio M (2017) Smokers’ lung cancer risk related to the cigarette-generated mainstream particles. J Aerosol Sci 107:41–54

    Article  CAS  Google Scholar 

  • Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Particle Fiber Toxicol 8:1–5

    Google Scholar 

  • Sun S, Schiller JH, Gazdar AF (2007) Lung cancer in never smokers—a different disease. Nature Rev Cancer 7(10):778–790

    Article  CAS  Google Scholar 

  • Sun W et al (2008) Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem 391(6):2119–2125

    Article  CAS  PubMed  Google Scholar 

  • Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ (2014) Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid. Drug Des Devel Ther 8:2333–2343

  • Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19(10):900–914

    Article  CAS  PubMed  Google Scholar 

  • Thangavelu P, Sundaram V, Gunasekaran K, Mujyambere B, Raju S, Kannan A, Arasu A, Krishna K, Ramamoorthi J, Ramasamy S, Velusamy T (2022) Development of optimized novel liposome loaded with 6-gingerol and assessment of its therapeutic activity against NSCLC In vitro and In vivo experimental models. Chem Phys Lipid 1(245):105206

    Article  Google Scholar 

  • Toloza EM, Morse MA, Lyerly HK (2006) Gene therapy for lung cancer. J Cellular Biochem 99(1):1–22

    Article  CAS  Google Scholar 

  • Tomalia DA, Fréchet JM (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polymer Sci Part a: Polymer Chem 40(16):2719–2728

    Article  CAS  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135

    Article  CAS  PubMed  Google Scholar 

  • Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thoracic Oncol 10(9):1243–1260

    Article  Google Scholar 

  • Tseng CL, Su WY, Yen KC, Yang KC, Lin FH (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomat 30(20):3476–3485

    Article  CAS  Google Scholar 

  • Uchenna Agu R, Ikechukwu Ugwoke M, Armand M, Kinget R, Verbeke N (2001) The lung as a route for systemic delivery of therapeutic proteins and peptides. Resp Res 2(4):1–2

    Article  Google Scholar 

  • Vaghasiya K, Ray E, Singh R, Jadhav K, Sharma A, Khan R, Katare OP, Verma RK (2021) Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Mat Sci Eng: C 123:112027

    Article  CAS  Google Scholar 

  • Vaidya B, Parvathaneni V, Kulkarni NS, Shukla SK, Damon JK, Sarode A et al (2019) Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int J Biol Macromol 122:338–347

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Yada E, Ohtake J, Sasada T (2017) Personalized peptide vaccines for cancer therapy: current progress and state of the art. Expert Rev Precis Med Drug Dev 2:371–381

    Article  Google Scholar 

  • Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G, Li Y (2017) Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomat 127:25–35

    Article  CAS  Google Scholar 

  • Wang X, Gu M, Toh TB, Abdullah NL, Chow EK (2018) Stimuli-responsive nanodiamond-based biosensor for enhanced metastatic tumor site detection. SLAS TECHNOLOGY: Translating Life Sci Innovat 23(1):44–56

    Article  CAS  Google Scholar 

  • Wang X, Chen H, Zeng X, Guo W, Jin Y, Wang S et al (2019) Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin b 9:167–176

    Article  PubMed  Google Scholar 

  • Ward S, Casey D, Labarthe MC, Whelan M, Dalgleish A, Pandha H, Todryk S (2002) Immunotherapeutic potential of whole tumour cells. Cancer Immunol, Immunotherapy 51:351–357

    Article  Google Scholar 

  • Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Europ J Pharm Biopharm 86(1):7–22

    Article  CAS  Google Scholar 

  • Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Europ J Pharm Biopharmaceutics 84(1):1–20

    Article  CAS  Google Scholar 

  • Wittgen BP, Kunst PW, Van Der Born K, Van Wijk AW, Perkins W, Pilkiewicz FG, Perez-Soler R, Nicholson S, Peters GJ, Postmus PE (2007) Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res 13(8):2414–2421

    Article  CAS  PubMed  Google Scholar 

  • Wu SH et al (2008) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 9(1):53–57

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhao Y, Mu X, Wu H, Chen L, Liu W, Mu Y, Liu J, Wei X (2015) A silica–polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. J Biomater Sci Polym Ed 26(6):384–400

    Article  CAS  PubMed  Google Scholar 

  • Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, Wang TW (2016) Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Scientific Rep 6(1):1–2

    Google Scholar 

  • Xia L, Schrump DS, Gildersleeve JC (2016) Whole-cell cancer vaccines induce large antibody responses to carbohydrates and glycoproteins. Cell Chem Biol 23(12):1515–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaoyu H, Ruonan S, Xiao W, He K, Shan R, Fei X, Huang G (2023) Study on co-delivery of pemetrexed disodium and Bcl-2 siRNA by poly-γ-glutamic acid-modified cationic liposomes for the inhibition of NSCLC. Drug Dev Ind Pharm 49(1):62–74

  • Xie Y, Aillon KL, Cai S, Christian JM, Davies NM, Berkland CJ et al (2010) Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. Int J Pharm 392:156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue HY, Wong HL (2011) Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomat 32(10):2662–2672

    Article  CAS  Google Scholar 

  • Yang Y, Huang Z, Li J, Mo Z, Huang Y, Ma C et al (2019a) PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv Healthc Mater 8:1900965

    Article  CAS  Google Scholar 

  • Yang W, Deng X, Huang W, Qing X, Shao Z (2019b) The physicochemical properties of graphene nanocomposites influence the anticancer effect. J Oncol 2019:7254534

  • Yu W, Liu C, Liu Y, Zhang N, Xu W (2010) Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharmaceutical Res 27(8):1584–1596

    Article  CAS  Google Scholar 

  • Yu B, Tan L, Zheng R, Tan H, Zheng L (2016) Targeted delivery and controlled release of paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mat Sci Eng: C 68:579–584

    Article  CAS  Google Scholar 

  • Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ (2008) Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharma 361(1–2):239–244

    Article  CAS  Google Scholar 

  • Zhang P, Ling G, Pan X, Sun J, Zhang T, Pu X, Yin S, He Z (2012) Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine Nanotech, Biol Med 8(2):185–93

    Article  Google Scholar 

  • Zhang L, Liu Z, Kong C, Liu C, Yang K, Chen H et al (2018) Improving drug delivery of micellar paclitaxel against non-small cell lung cancer by co-loading itraconazole as a micelle stabilizer and a tumor vascular manipulator. Small 14:e1802112

    Article  PubMed  Google Scholar 

  • Zhang H, Penninger J, Li Y et al (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46:586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Qian Y, Li H, Yang Y, Wang J, Yu W, Li M, Cheng W, Shan L (2022) Amentoflavone-loaded nanoparticles enhanced chemotherapy efficacy by inhibition of AKR1B10. Nanotechnology 33(38):385101

    Article  Google Scholar 

  • Zhao ZT, Wang J, Fang L, Qian XD, Cai Y, Cao HQ, Wang GR, He ML, Jiang YY, Wang DG, Li YP (2023) Dual-responsive nanoparticles loading bevacizumab and gefitinib for molecular targeted therapy against non-small cell lung cancer. Acta Pharmacol Sin 44(1):244–254

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Zhou CC (2015) Targeted therapies for patients with advanced NSCLC harboring wild-type EGFR: what’s new and what’s enough. Chinese J Cancer 34(3):1

    Article  Google Scholar 

  • Zhu F, Tan G, Jiang Y, Yu Z, Ren F (2018) Rational design of multi-stimuli-responsive gold nanorod–curcumin conjugates for chemo-photothermal synergistic cancer therapy. Biomat Sci 6(11):2905–2917

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Sumel Ashique, Ashish Garg, and Neeraj Mishra; methodology: Sumel Ashique, Neha Raina, Radha Rani, and Long Chiau Ming; formal analysis and investigation: Sumel Ashique, Neha Raina, Madhu Gupta; writing—original draft preparation: Sumel Ashique, Ashish Garg, and Neeraj Mishra; writing—review and editing: Ashish Garg, Neeraj Mishra, and Madhu Gupta. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Madhu Gupta.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors have read the manuscript and have approved this submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashique, S., Garg, A., Mishra, N. et al. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn-Schmiedeberg's Arch Pharmacol 396, 2769–2792 (2023). https://doi.org/10.1007/s00210-023-02522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02522-5

Keywords

Navigation