Skip to main content
Log in

Preclinical data on morpholine (3,5-di-tertbutyl-4-hydroxyphenyl) methanone induced anxiolysis

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5–20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood–brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light–dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Albuquerque Danilo Y, Wystan TKO, Senthil N, Ricardo SS (2022) Recent developments on palladium-catalyzed carbonylation reactions in renewable solvents. J Braz Chem Soc 33(7):637–663

    Google Scholar 

  • Ahmadi F, Dabirian S, Faizi M, Tabatabai SA, Beiki D, Shahhosseini S (2014) Optimum conditions of radioligand receptor binding assay of ligands of benzodiazepine receptors. Iran J Pharm Res 13:79–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashby JA, McGonigle IV, Price KL, Cohen N, Comitani F, Dougherty DA, Molteni C, Lummis SC (2012) GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study. Biophys J 103(10):2071–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aya I, Ashot G, Troels S, Annette B (2020) Renewable solvents for palladium-catalyzed carbonylation reactions. Org Process Res Dev 24(11):2665–2675

    Article  Google Scholar 

  • Bagadia VN, Karnik NR, Shah LP (1973) Trioxazine in the treatment of neurosis. Indian J. PsychUt. 15, pp. 187-192

  • Baldwin DS, Waldman S, Allgulander C (2011) Evidence-based pharmacological treatment of generalized anxiety disorder. Int J Neuropsychopharmacol 14(5):697–710

    Article  CAS  PubMed  Google Scholar 

  • Bandelow B, Michaelis S, Wedekind D (2017) Treatment of anxiety disorders. Dialogues Clin Neurosci 19(2):93–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassetto M, De Burghgraeve T, Delang L, Massarotti A, Coluccia A, Zonta N, Gatti V, Colombano G, Sorba G, Silvestri R, Tron GC, Neyts J, Leyssen P, Brancale A (2013) Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya vírus. Antiviral Res 98:12–18

    Article  CAS  PubMed  Google Scholar 

  • Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L (2020) Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors. Front Oncol 10:739

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjumea DM, Gómez-Betancur IC, Vásquez J, Alzate F, García_Silva A, Fontenla JA (2016) Neuropharmacological effects of the ethanolic extract of Sida acuta. Rev Brasil Farmacognosia [online] 26 2, pp. 209-215

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS - a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  • Berezhnoy D, Nyfeler Y, Gonthier A, Schwob H, Goeldner M, Sigel E (2004) On the benzodiazepine binding pocket in GABAA receptors. J Biol Chem 279:3160–3168

    Article  CAS  PubMed  Google Scholar 

  • Bigott-Hennkens HM, Dannoon S, Lewis MR, Jurisson SS (2008) In-vitro receptor binding assays: general methods and considerations. Q J Nucl Med Mol Imaging 52:245–253

    CAS  PubMed  Google Scholar 

  • Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463(1–3):55–65

    Article  CAS  PubMed  Google Scholar 

  • Brito AF, Martins JL, Fajemiroye JO, Galdino PM, De Lima TC, Menegatti R, Costa EA (2012) Central pharmacological activity of a new piperazine derivative: 4-(1-phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci 90(23–24):910–916

    Article  PubMed  Google Scholar 

  • Brito AF, Fajemiroye JO, Neri HFS, Silva DM, Silva DPB, Sanz G, Vaz BG, de Carvalho FS, Ghedini PC, Lião LM, Menegatti R, Costa EA (2017) Anxiolytic-like effect of 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol is mediated through the benzodiazepine and nicotinic pathways. Chem Biol Drug Des 90(3):432–442

    Article  CAS  PubMed  Google Scholar 

  • Borghese CM, Herman M, Snell LD, Lawrence KJ, Lee HY, Backos DS, Vanderlinden LA, Harris RA, Roberto M, Hoffman PL, Tabakoff B (2017) Novel molecule exhibiting selective affinity for GABAA receptor subtypes. Sci Rep 7:6230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bylund DB, Toews ML (1993) Radioligand binding methods: practical guide and tips. American J Physiol 265:421–429

    Google Scholar 

  • Carlini EA, Burgos V (1979) Screening farmacológico de ansiolíticos: metodologia laboratorial e comparação entre diazepam e clorobenzepam. Rev Assoc Bras Psiquiatr 1:25–31

    Google Scholar 

  • Chagas CM, Moss S, Alisaraie L (2018) Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski’s rule of five. Int J Pharm 549(1–2):133–149

    Article  CAS  PubMed  Google Scholar 

  • Chen ZW, Olsen RW (2007) GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J Neurochem 100(2):279–294. https://doi.org/10.1111/j.1471-4159.2006.04206.x

    Article  CAS  PubMed  Google Scholar 

  • Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170

    Article  CAS  PubMed  Google Scholar 

  • Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, Lima TC, Cunha AP (2006) Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytother Res 20(12):1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2006) The PyMOL molecular graphics system, version 0.99rc6. Cambridge, MA: Schrödinger LLC

  • Drogovoz C M (2007) Pharmacology on your palms. Ministry of Health of Ukraine, Carcóvia

  • Egan WJ, Jr Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43(21):3867–3877

    Article  CAS  PubMed  Google Scholar 

  • Egan WJ, Lauri G (2002) Prediction of intestinal permeability. Adv Drug Deliv Rev 54(3):273–289

    Article  CAS  PubMed  Google Scholar 

  • Elgarf AA, Siebert DCB, Steudle F, Draxler A, Li G, Huang S, Cook JM, Ernst M, Scholze P (2018) Different benzodiazepines bind with distinct binding modes to GABAA receptors. ACS Chem Biol 13(8):2033–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etherington LA, Mihalik B, Pálvölgyi A, Ling I, Pallagi K, Kertész S, Varga P, Gunn BG, Brown AR, Livesey MR, Monteiro O, Belelli D, Barkóczy J, Spedding M, Gacsályi I, Antoni FA, Lambert JJ (2017) Selective inhibition of extra-synaptic α5-GABAA receptors by S44819, a new therapeutic agent. Neuropharmacol 125:353–364

    Article  CAS  Google Scholar 

  • Fajemiroye JO, Adam K, Jordan KZ, Alves CE, Aderoju AA (2018) Evaluation of anxiolytic and antidepressant-like activity of aqueous leaf extract of Nymphaea Lotus Linn. in mice. Iran J Pharm Res Spring 17(2):613–626

    CAS  Google Scholar 

  • Fajemiroye JO, da Silva DM, de Oliveira DR, Costa EA (2016) Treatment of anxiety and depression: medicinal plants in retrospect. Fundam Clin Pharmacol 30(3):198–215

    Article  CAS  PubMed  Google Scholar 

  • Fajemiroye JO, Galdino PM, Florentino IF, Da Rocha FF, Ghedini PC, Polepally PR, Zjawiony JK, Costa EA (2014) Plurality of anxiety and depression alteration mechanism by oleanolic acid. J Psychopharmacol 28(10):923–34

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LLG, Andricopulo AD (2019) ADMET modeling approaches in drug discovery. Drug Discov Today 24(5):1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Florentino IF, Galdino P M, De Oliveira L P, et al (2015) Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide : Biology and Chemistry. 47, pp. 17–24

  • Fluyau D, Revadigar N, Manobianco BE (2018) Challenges of the pharmacological management of benzodiazepine withdrawal, dependence, and discontinuation. Therap Adv Psychopharmacol, pp. 147–168

  • Ganellin C R, Triggle D J (1996) Index Nominum 2000: International Drug Directory. Ed. Taylor & Francis, 17ª ed, 2000. In: Dictionary of Pharmacological Agents

  • Ganesan M, Kanimozhi G, Pradhapsingh B, Khan HA, Alhomida AS, Ekhzaimy A, Brindha GR, Prasad NR (2021) Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomed Pharmacother 139:111632

    Article  CAS  PubMed  Google Scholar 

  • Garakani A, Murrough J W, Freire RC, Thom R P, Larkin K, Buono F D, Iosifescu D V (2020a) Pharmacotherapy of anxiety disorders: current and emerging treatment options. Front Psychiatry. Dec 23;11:595584.

  • Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV (2020b) Pharmacotherapy of anxiety disorders: current and emerging treatment options. Front Psych 11:584–595

    Google Scholar 

  • Ghit A, Assal D, Al-Shami AS, Hussein DEE (2021) GABAA receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol 19:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery 1 A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Goddard TD, Huang CC, Ferrin TE (2005) Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure 13(3):473–482

    Article  CAS  PubMed  Google Scholar 

  • Gould TD, Dao DT, Kovacsics CE (2009) The Open Field Test. In: Gould T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods 42. Humana Press, Totowa, NJ

  • Harrison C, Traynor JR (2003) The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci 74:489–508

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T (1998) GABA receptor chloride ion channel. Nihon Rinsho 56:1824–9

  • Hoffman E, Winder SJ (2016) A modified wire hanging apparatus for small animal muscle function testing. PLoS Curr 2(8):ecurrents.md.1e2bec4e78697b7b0ff80ea25a1d38be. https://doi.org/10.1371/currents.md.1e2bec4e78697b7b0ff80ea25a1d38be

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MT, Vogel FD, Koniuszewski F, Scholze P, Rehman S, Simeone X, Schnürch M, Mihovilovic MD, Ernst M (2020) GABAA receptor ligands often interact with binding sites in the transmembrane domain and in the extracellular domain-can the promiscuity code be cracked? Int J Mol Sci 21(1):334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Hossain R, Ahmed T, Rahaman MM, Al-Khafaji K, Khan RA, Sarkar C, Bappi MH, de Andrade EM, Araújo IM, Coutinho HDM, Kowalska G, Kowalski R, Hanif MA, Islam MT (2022) Anxiolytic-like Effect of quercetin possibly through GABA receptor interaction pathway: in vivo and in silico studies. Molecules 27(21):7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Molla S, Zihad SMNK, Umer M, Rahman M S, Zaman F, Das A K, Afzal MI, Salehi B, Akter M S, Mubarak M S, Martins N, Imran M, Chaudhary N, Iqbal Z, Sharifi-Rad J (2020) Ascorbic acid antagonizes the sedative effect of diazepam possibly through inhibition of GABA(Aρ1) and GABA(B1) receptors. Cell Mol Biol (Noisy-le-grand) 66 4, pp. 15-19

  • Jia CY, Li JY, Hao GF, Yang GF (2020) A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov Today 25(1):248–258

    Article  CAS  PubMed  Google Scholar 

  • Jones BJ, Roberts DJ (1968) A rotarod suitable for quantita-tive measurements of motor incoordination in naive mice. Naunyn Schmiedebergs Arch Pharmacol 259(211):7

    Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kim JJ, Gharpure A, Teng J, Zhuang Y, Howard RJ, Zhu S, Noviello CM, Walsh RM Jr, Lindahl E, Hibbs RE (2020) Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585(7824):303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling I, Mihalik B, Etherington LA, Kapus G, Pálvölgyi A, Gigler G, Kertész S, Gaál A, Pallagi K, Kiricsi P, Szabó É, Szénási G, Papp L, Hársing LG, Lévay G, Spedding M, Lambert JJ, Belelli D, Barkóczy J, Volk B, Simig G, Gacsályi I, Antoni FA (2015) A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential. Eur J Pharmacol 764:497–507

    Article  CAS  PubMed  Google Scholar 

  • Khoramjouy M, Zarepishe N, Rezaee E, Imani A, Mahmoudzadeh-Mandolakani R, Hashemi S, Fallah M, Hasheminasab G, Shahhosseini S, Tabatabai SA, Faizi M (2021) Novel derivatives of diphenyl-1,3,4-oxadiazol as ligands of benzodiazepine receptors; synthesize, binding assay and pharmacological evaluation. Iran J Pharm Res 20(4):47–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraeuter AK, Guest PC, Sarnyai Z (2019) The open field test for measuring locomotor activity and anxiety-like behavior. In: Guest P (ed) Pre-Clinical Models. Methods in Molecular Biology, vol 1916. Humana Press, New York, NY

  • Kulesskaya N, Voikar V (2014) Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav 133:30–38

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Meena MK, Kumari K, Kumar RV, Bahadur I, Jain P, Singh P (2021) Exploring the effect of temperature on inhibition of non-structural protease 3 of Chikungunya virus using molecular dynamics simulations and thermodynamics parameters. J Mol Liq 335:116164

    Article  CAS  Google Scholar 

  • Lee HM, Yu MS, Kazmi SR, Oh SY, Rhee KH, Bae MA, Lee BH, Shin DS, Oh KS, Ceong H, Lee D, Na D (2019) Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics 20(Suppl 10):250

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  PubMed  Google Scholar 

  • Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P (2005) Selective anxiolysis produced by ocinaplon, a GABAA receptor modulator. Proc Natl Acad Sci USA 102:7380–7385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Lim-Wilby M (2008) Molecular docking. In: Kukol A (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, Humana Press, vol 443, pp. 365–382

  • Nagasaka M, Kameyama T (1983) Effects of diazepam, meprobamate, chlorpromazine and apomorphine on a quickly learned conditioned suppression in mice. J Pharmacobiody 6(8):523–526

    Article  CAS  Google Scholar 

  • Nieva-Echevarría B, Manzanos MJ, Goicoechea E, Guillén MD (2015) 2,6-Di-Tert-Butyl-hydroxytoluene and its metabolites in foods. Comprehen Rev Food Sci Food Safety 14:67–80

    Article  Google Scholar 

  • Passos G, Gomes M, Aquino TM, Araújo-Júnior JX, Souza S, Cavalcante J, Santos E, Bassi ÊJ, Silva-Júnior E (2020) Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of E3-E2-E1 glycoproteins complex from chikungunya virus. Pharmaceuticals 13(7):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathania S, Singh PK (2021) Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols? Expert Opin Drug Metabo Toxicol 17(4):351–354

    Article  CAS  Google Scholar 

  • Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popik P, Kostakis E, Krawczyk M, Nowak G, Szewczyk B, Krieter P, Chen Z, Russek SJ, Gibbs TT, Farb DH, Skolnick P, Lippa AS, Basile AS (2006) The anxioselective agent 7-(2-chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl(pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at α1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 319:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Ramsey SJ, Attkins NJ, Fish R, van der Graaf PH (2011) Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo. Br J Pharmacol 164:992–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold JA, Rickels K (2015) Pharmacological treatment for generalized anxiety disorder in adults: an update. Expert Opin Pharmacother 16(11):1669–1681

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Tiriveedhi V (2020) Perplexing role of P-glycoprotein in tumor microenvironment. Front Oncol 10:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha FF, Almeida CS, dos Santos RT, Santana AS, Costa EA, de Paula JR, Vanderlinde FA (2011) Anxiolytic-like and sedative effects of Hydrocotyle umbellata L, Araliaceae, extract in mice. Rev Brasil Farmacognosia [online] 21(1):115–120

    Article  Google Scholar 

  • Serikuly N, Alpyshov ET, Wang D, Wang J, Yang L, Hu G, Yan D, Demin KA, Kolesnikova TO, Galstyan D, Amstislavskaya TG, Babashev AM, Mor MS, Efimova EV, Gainetdinov RR, Strekalova T, de Abreu MS, Song C, Kalueff AV (2021) Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 104:109977

    Article  CAS  PubMed  Google Scholar 

  • Shanmugasundaram J, Subramanian V, Nadipelly J, Kathirvelu P, Sayeli V, Cheriyan BV (2020) Anxiolytic-like activity of 5-methoxyflavone in mice with involvement of GABAergic and serotonergic systems - in vivo and in silico evidences. Eur Neuropsychol 36:100–110

    Article  CAS  Google Scholar 

  • Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS (2018) Blood brain barrier: a review of its anatomy and physiology in health and disease. Clin Anat (New York, NY) 31(6):812–823

    Article  Google Scholar 

  • Shi X, Bai H, Wang J, Wang J, Huang L, He M, Zheng X, Duan Z, Chen D, Zhang J, Chen X, Wang J (2021) Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front Neurol 12:511–667

    Article  Google Scholar 

  • Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S, Hattori N (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189(2):180–185

    Article  PubMed  Google Scholar 

  • Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287(48):40224–40231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva LR, Guimarães AS, do Nascimento J, do Santos Nascimento IJ, da Silva EB, McKerrow JH, Cardoso SH, da Silva-Júnior EF (2021) Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 41, p. 116213

  • Silva ON, Franco OL, Neves BJ, Morais ÁCB, De Oliveira NJR, da Cunha LC, Naves LM, Pedrino GR, Costa EA, Fajemiroye JO (2020) Involvement of the gabaergic, serotonergic and glucocorticoid mechanism in the anxiolytic-like effect of mastoparan-L. Neuropeptides 81:102027

    Article  CAS  PubMed  Google Scholar 

  • Silva-Junior EF, Barcellos Franca PH, Ribeiro FF, Mendonça-Junior FJB, Scotti L, Scotti MT, de Aquino TM, de Araujo-Junior JX (2018) Molecular docking studies applied to a dataset of cruzain inhibitors. Curr Comput Aided Drug Des 14(1):68–78

    Article  PubMed  Google Scholar 

  • Simeone X, Siebert DC, Bampali K, Varagic Z, Treven M, Rehman S, Pyszkowski J, Holzinger R, Steudle F, Scholze P, Mihovilovic MD, Schnürch M, Ernst M (2017) Molecular tools for GABAA receptors: high affinity ligands for β1-containing subtypes. Sci Rep 7:5674–5685

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice Influence of dopaminergic transmissions. Behav Brain Res 61(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Stanford SC (2007) The open field test: reinventing the wheel. J Psychopharmacol 21(2):134–135

    Article  PubMed  Google Scholar 

  • Stamenić TT, Poe MM, Rehman S, Santrač A, Divović B, Scholze P, Ernst M, Cook JM, Savić MM (2016) Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABAA receptors containing the α5 subunit. Eur J Pharmacol 791:433–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanzione F, Giangreco I, Cole JC (2021) Use of molecular docking computational tools in drug discovery. Prog Med Chem 60:273–343

    Article  PubMed  Google Scholar 

  • Strange PG (2010) Use of the GTPγS ([35S]GTPγS and Eu-GTPγS) binding assay for analysis of ligand potency and efficacy at G protein-coupled receptors. Br J Pharmacol 161(6):1238–1249. https://doi.org/10.1111/j.1476-5381.2010.00963.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Revi 99(1):21–78

    Article  CAS  Google Scholar 

  • Thompson M (2004) Proceedings of The 228th ACS National Meeting. Planaria Software LLC; Philadelphia, PA, USA. Molecular Docking Using ArgusLab: An efficient shape-based search algorithm and an enhanced XScore scoring function

  • Tiwari A, Singh S (2022) Computational approaches in drug designing. In: Singh DB, Pathak RJ (eds) Bioinformatics. Elsevier, pp 207–217

    Chapter  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Vogel HG (2008) Psychotropic and neurotropic activity. In: Vogel H (ed) Drug discovery and evaluation: pharmacological assays. Springer, Berlin Heidelberg, pp 565–693

    Chapter  Google Scholar 

  • Watanabe M, Maemura K Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 213, pp. 1–47

  • Zhu S, Sridhar A, Teng J, Howard RJ, Lindahl E, Hibbs RE (2022) Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities. Nat Commun 13(1):4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to FAPEG, FUNADESP and the workers at the Central Bioterium of the Federal University of Goiás for the research supports and contribution to this study.

Funding

The author disclosed the receipt of the Fundação Nacional de Desenvolvimento do Ensino Superior Particular (FUNADESP) scholarship in support for the research.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: IBC, CVLM, ACCR, LKSM, JKAP, RM, FFR and JOF; analysis and result interpretation: CDG, LML, LSM, BGV, LCC, CVLM, ACCR, JRON, EFSJ, IBC, EAC and TMA, PFSSJ; manuscript drafting and editing: IBC, JKAP, ONS, FFR, EAC, TMA, PFSSJ, RM, JOF. All authors reviewed the results and approved the final version of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to James O. Fajemiroye.

Ethics declarations

Ethical approval

The current research adhered to the ethical and professional conduct with all the experimental protocols approved by the Ethics Committee for the Use of Animals of the Federal University of Goiás-Brazil with the reference number 022/20.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3395 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, I.B., de Lima Moreira, C.V., Rodrigues, A.C.C. et al. Preclinical data on morpholine (3,5-di-tertbutyl-4-hydroxyphenyl) methanone induced anxiolysis. Naunyn-Schmiedeberg's Arch Pharmacol 396, 2957–2975 (2023). https://doi.org/10.1007/s00210-023-02502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02502-9

Keywords

Navigation