Skip to main content
Log in

Ferulic acid-loaded nanostructure prevents morphine reinstatement: the involvement of dopamine system, NRF2, and ΔFosB in the striatum brain area of rats

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Morphine is among the most powerful analgesics and pain-relieving agents. However, its addictive properties limit their medical use because patients may be susceptible to abuse and reinstatement. Morphine addiction occurs because of dopamine release in the mesolimbic brain area, implying in an increase in oxidative stress. Ferulic acid (FA), a phenolic phytochemical found in a variety of foods, has been reported to exert antioxidant and neuroprotective effects; however, its low bioavailability makes its nano-encapsulated form a promising alternative. This study aimed to evaluate the protective effects of a novel nanosystem with FA on morphine reinstatement and the consequent molecular neuroadaptations and oxidative status in the mesolimbic region. Rats previously exposed to morphine in conditioned place preference (CPP) paradigm were treated with ferulic acid-loaded nanocapsules (FA-Nc) or nonencapsulated FA during morphine-preference extinction. Following the treatments, animals were re-exposed to morphine to induce the reinstatement. While morphine-preference extinction was comparable among all experimental groups, FA-Nc treatment prevented morphine reinstatement. In the dorsal striatum, while morphine exposure increased lipid peroxidation (LP) and reactive species (RS), FA-Nc decreased LP and FA decreased RS levels. Morphine exposure increased the dopaminergic markers (D1R, D3R, DAT) and ΔFosB immunoreactivity in the ventral striatum; however, FA-Nc treatment decreased D1R, D3R, and ΔFosB and increased D2R, DAT, and NRF2. In conclusion, FA-Nc treatment prevented the morphine reinstatement, promoted antioxidant activity, and modified the dopaminergic neurotransmission, NRF2, and ΔFosB, what may indicate a neuroprotective and antioxidant role of this nanoformulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Additional necessary data can be requested from the author if necessary.

References

  • Asano T, Matsuzaki H, Iwata N, Xuan M, Kamiuchi S, Hibino Y, Sakamoto T, Okazaki M (2017) Protective effects of ferulic acid against chronic cerebral hypoperfusion-induced swallowing dysfunction in rats. Int J Mol Sci 18(3):550. https://doi.org/10.3390/ijms18030550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askar MH et al (2019) Effects of exercise and ferulic acid on alpha synuclein and neuroprotective heat shock protein 70 in an experimental model of parkinsonism disease. CNS Neurol Disord Drug Targets 18(2):156–169

    Article  CAS  PubMed  Google Scholar 

  • Barone E, Calabrese V, Mancuso C (2009) Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 10(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Benchekroun M et al (2016) The antioxidant additive approach for Alzheimer’s disease therapy: new ferulic (lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants, and nuclear factor (erythroid-derived 2)-like 2 activators. J Med Chem 59(21):9967–9973

    Article  CAS  PubMed  Google Scholar 

  • Berríos-Cárcamo P, Quezada M, Quintanilla ME, Morales P, Ezquer M, Herrera-Marschitz M, Israel Y, Ezquer F (2020) Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules. Antioxidants (Basel) 9(9):830. https://doi.org/10.3390/antiox9090830

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Agathokleous E, Calabrese V (2021) Ferulic acid and hormesis: biomedical and environmental implications. Mech Ageing Dev 198:111544

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44(6):587–604

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY et al (2008) Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res 1209:136–150

    Article  CAS  PubMed  Google Scholar 

  • Cohen H et al (2008) Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder. Biol Psychiatry 64:708–717

    Article  CAS  PubMed  Google Scholar 

  • Congar P, Bergevin A, Trudeau LE (2002) D2 receptors inhibit the secretory process downstream from calcium influx in dopaminergic neurons: implication of K+ channels. J Neurophysiol 87(2):1046–1056

    Article  CAS  PubMed  Google Scholar 

  • Congiu M et al (2021) N-Acylethanolamine acid amidase inhibition potentiates morphine analgesia and delays the development of tolerance. Neurotherapeutics 18(4):2722–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias VT et al (2017) Could modafinil prevent psychostimulant addiction? An experimental study in rats. Basic Clin Pharmacol Toxicol 121(5):400–408

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ (2014) Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories—indications for novel treatments of addiction. Eur J Neurosci 40(1):2163–2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford CP (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282:13–22

    Article  CAS  PubMed  Google Scholar 

  • Ford CP et al (2010) Control of extracellular dopamine at dendrite and axon terminals. J Neurosci 30(20):6975–6983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galaj E, Ewing S, Ranaldi R (2018) Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 89:13–28

    Article  CAS  PubMed  Google Scholar 

  • Georgiou P et al (2015) The oxytocin analogue carbetocin prevents priming-induced reinstatement of morphine-seeking: involvement of dopaminergic, noradrenergic and MOPr systems. Eur Neuropsychopharmacol 25(12):2459–2464

    Article  CAS  PubMed  Google Scholar 

  • Goncalves J, Baptista S, Silva AP (2014) Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 87:135–149

    Article  CAS  PubMed  Google Scholar 

  • Hassanzadeh P et al (2017) Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci 179:9–14

    Article  CAS  PubMed  Google Scholar 

  • Holems A, Rodgers RJ (2003) Prior exposure to the elevated plus-maze sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J Pharmacol 459:221–230

    Article  Google Scholar 

  • Hu R, Song R, Yang R, Su R, Li J (2013) The dopamine D3 receptor antagonist YQA14 that inhibits the expression and drug-primed reactivation of morphine-induced conditioned place preference in rats. Eur J Pharmacol. S0014–2999(13). https://doi.org/10.1016/j.ejphar.2013.10.026

  • Ikemoto S, Yang C, Tan A (2015) Basal ganglia circuit loops, dopamine and motivation: a review and enquiry. Behav Brain Res 290:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus CHA et al (2022) Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model. Behav Brain Res 28(435):114076

    Article  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413

    Article  PubMed  Google Scholar 

  • Kansanen E et al (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanski J et al (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13(5):273–281

    Article  CAS  PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenzi J et al (2015) Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system. Metab Brain Dis 30(6):1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195

    Article  CAS  PubMed  Google Scholar 

  • Marcellino D, et al (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem, 283(38): p. 26016–25

  • Martins CC et al (2022) Contribution of opioid and nitrergic systems to m-trifluoromethyl diphenyl diselenide attenuates morphine-induced tolerance in mice. ACS Chem Neurosci 13(7):910–919

    Article  CAS  PubMed  Google Scholar 

  • Mattick RP, Kimber J, Breen C, Davoli M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev. 2004;(3):CD002207. https://doi.org/10.1002/14651858.CD002207.pub2

  • Milanesi LH et al (2017) Toxicological aspects of the interesterified-fat from processed foods: influences on opioid system and its reward effects in rats. Food Chem Toxicol 110:25–32

    Article  CAS  PubMed  Google Scholar 

  • Milanesi LH et al (2019) Mediterranean X Western based diets: opposite influences on opioid reinstatement. Toxicol Lett 308:7–16

    Article  CAS  PubMed  Google Scholar 

  • Milanesi LH et al (2021) Topiramate-chitosan nanoparticles prevent morphine reinstatement with no memory impairment: dopaminergic and glutamatergic molecular aspects in rats. Neurochem Int 150:105157

    Article  CAS  PubMed  Google Scholar 

  • Montgomery K (1955) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol 48:254–260

    CAS  Google Scholar 

  • Muller DL, Unterwald EM (2005) D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration. J Pharmacol Exp Ther 314(1):148–154

    Article  CAS  PubMed  Google Scholar 

  • Muschamp JW et al (2012) DeltaFosB enhances the rewarding effects of cocaine while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488. Biol Psychiatry 71(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Nazari-Serenjeh F et al (2020) D1- but not D2-like dopamine receptor antagonist in the CA1 region of the hippocampus reduced stress-induced reinstatement in extinguished morphine-conditioning place preference in the food-deprived rats. Behav Pharmacol 31(2&3):196–206

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2015) FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol 753:66–72

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98(20):11042–11046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Olsen CM (2011) Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 61(7):1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onoue S, Yamada S, Chan HK (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 9:1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampelotto CR et al (2022) Ferulic acid-loaded nanocapsules: evaluation of mucosal interaction, safety and antioxidant activity in human mononucleated cells. Toxicol in Vitro 78:105259

    Article  CAS  PubMed  Google Scholar 

  • Ridray S et al (1998) Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur J Neurosci 10(5):1676–1686

    Article  CAS  PubMed  Google Scholar 

  • Robertson SD, Matthies HJ, Galli A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 39(2):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roversi K et al (2016) Trans fat intake across gestation and lactation increases morphine preference in females but not in male rats: behavioral and biochemical parameters. Eur J Pharmacol 788:210–217

    Article  CAS  PubMed  Google Scholar 

  • Schmitz Y et al (2003) Presynaptic regulation of dopaminergic neurotransmission. J Neurochem 87(2):273–289

    Article  CAS  PubMed  Google Scholar 

  • Segat HJ et al (2014) Exercise modifies amphetamine relapse: behavioral and oxidative markers in rats. Behav Brain Res 262:94–100

    Article  CAS  PubMed  Google Scholar 

  • Segat HJ et al (2017) Influence of physical activity on addiction parameters of rats exposed to amphetamine which were previously supplemented with hydrogenated vegetable fat. Brain Res Bull 135:69–76

    Article  CAS  PubMed  Google Scholar 

  • Sivandzade F et al (2019) NRF2 and NF-B interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surmeier DJ, et al Are neostriatal dopamine receptors co-localized? Trends Neurosci. 16: p. 299–305

  • Teixeira AM et al (2009) Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav 92(2):231–235

    Article  CAS  PubMed  Google Scholar 

  • Thanos PK et al (2010) Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors. J Psychopharmacol 24(6):897–904

    Article  CAS  PubMed  Google Scholar 

  • The diagnostic and statistical manual of mental disorders (5th ed.; DSM–5; American Psychiatric Association, 2013)

  • Tobin S et al (2013) Antagonism of the dopamine D1-like receptor in mesocorticolimbic nuclei attenuates acute food deprivation-induced reinstatement of heroin seeking in rats. Eur J Neurosci 37(6):972–981

    Article  PubMed  Google Scholar 

  • Tops M et al (2014) Why social attachment and oxytocin protect against addiction and stress: insights from the dynamics between ventral and dorsal corticostriatal systems. Pharmacol Biochem Behav 119:39–48

    Article  CAS  PubMed  Google Scholar 

  • Trombino S et al (2013) Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf B Biointerfaces 109:273–279

    Article  CAS  PubMed  Google Scholar 

  • World Drug Report (2020) Cross Cutting Issues – Opioid Crisis (United Nations publication, Sales No. E.20. XI.6 (Booklet 4))

  • Xu B et al (2006) Heroin-administered mice involved in oxidative stress and exogenous antioxidant-alleviated withdrawal syndrome. Basic Clin Pharmacol Toxicol 99(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Xu Y et al (2013) Ferulic acid increases pain threshold and ameliorates depression-like behaviors in reserpine-treated mice: behavioral and neurobiological analyses. Metab Brain Dis 28(4):571–583

    Article  PubMed  Google Scholar 

  • You ZB et al (2019) Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 44(8):1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Zdunska K et al (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31(6):332–336

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Kalivas PW (2008) N-Acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 63(3):338–340

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y et al (2016) A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530(7589):219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This study is part of the National Institute of Science and Technology in Pharmaceutical Nanotechnology: a transdisciplinary approach INCT-NANOFARMA, which is supported by São Paulo Research Foundation (FAPESP, Brazil) Grant #2014/50928–2 and by “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq, Brazil) Grant # 465687/2014–8. Authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasil); CAPES, Brasil; Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brasil); and PRPGP-UFSM (PROAP) for their fellowships and financial support.

Author information

Authors and Affiliations

Authors

Contributions

The authors Laura Hautrive Milanesi, Domenika Rubert Rossato, Jéssica Leandra Oliveira da Rosa, Lívia Ferraz D’avila, and Vinícia Garzella Metz performed the animal experimental activity, data acquisition, data analysis, and interpretation. Camila Reck Rampelotto, Viviane Gonçalves Pereira, Scheila Rezende Schaffazick, and Cristiane de Bona da Silva participated in the production of the nanoformulations used. Laura Hautrive Milanesi, Domenika Rubert Rossato, and Marilise Escobar Burger worked on the conception and design of the study, writing of the article, critical review of the intellectual content, and final approval of the version to be submitted.

Corresponding author

Correspondence to Marilise E. Burger.

Ethics declarations

Ethical approval

We declare that the animal experiment was approved by the Animal Ethical Committee (Universidade Federal de Santa Maria—UFSM), which is affiliated to the Council for Control of Animal Experiments (CONCEA), following international norms of care and animal maintenance.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Ferulic acid-loaded nanocapsules (FA-Nc) prevents morphine reinstatement

• FA-Nc /nonencapsulated ferulic acid (FA) are antioxidant in dorsal striatum

• FA-Nc reverses morphine-induced dopaminergic marker changes

• FA-Nc increases NRF2 level in ventral striatum (VS)

• FA-Nc/FA reverse higher level of morphine-induced ΔFosB in VS

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milanesi, L.H., Rossato, D.R., Rosa, J.L.O. et al. Ferulic acid-loaded nanostructure prevents morphine reinstatement: the involvement of dopamine system, NRF2, and ΔFosB in the striatum brain area of rats. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1535–1545 (2023). https://doi.org/10.1007/s00210-023-02420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02420-w

Keywords

Navigation