Skip to main content

Advertisement

Log in

Pulmonary inflammation, oxidative stress, and fibrosis in a mouse model of cholestasis: the potential protective properties of the dipeptide carnosine

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2023

This article has been updated

Abstract

Cholestasis is a clinical complication that primarily influences the liver. However, it is well known that many other organs could be affected by cholestasis. Lung tissue is a major organ influenced during cholestasis. Cholestasis-induced lung injury could induce severe complications such as respiratory distress, serious pulmonary infections, and tissue fibrosis. Unfortunately, there is no specific pharmacological intervention against this complication. Several studies revealed that oxidative stress and inflammatory response play a role in cholestasis-induced lung injury. Carnosine (CARN) is a dipeptide found at high concentrations in different tissues of humans. CARN’s antioxidant and antiinflammatory properties are repeatedly mentioned in various experimental models. This study aimed to assess the role of CARN on cholestasis-induced lung injury. Rats underwent bile duct ligation (BDL) to induce cholestasis. Broncho-alveolar lavage fluid (BALF) levels of inflammatory cells, pro-inflammatory cytokines, and immunoglobulin were monitored at scheduled intervals (7, 14, and 28 days after BDL). Moreover, lung tissue histopathological alterations and biomarkers of oxidative stress were evaluated. A significant increase in BALF inflammatory cells, TNF-α, IL-1β, IL-6, and immunoglobulin-G (IgG) was detected in the BALF of BDL rats. Moreover, lung tissue histopathological changes, collagen deposition, increased TGF-β, and elevated levels of oxidative stress biomarkers were evident in cholestatic animals. It was found that CARN (100 and 500 mg/kg, i.p.) significantly alleviated lung oxidative stress biomarkers, inflammatory response, tissue fibrosis, and histopathological alterations. These data indicate the potential protective properties of CARN in the management of cholestasis-induced pulmonary damage. The effects of CARN on inflammatory response and oxidative stress biomarkers seems to play a crucial role in its protective properties in the lung of cholestatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this investigation are included in this manuscript.

Change history

References

  • Abdoli N, Sadeghian I, Azarpira N, Ommati MM, Heidari R (2021) Taurine mitigates bile duct obstruction-associated cholemic nephropathy: effect on oxidative stress and mitochondrial parameters. Clin Exp HEPATOL 7(1):30–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad AA, Falla AM, Duffell E, Noori T, Bechini A, Reintjes R, Veldhuijzen IK (2018) Estimating the scale of chronic hepatitis B virus infection among migrants in EU/EEA countries. BMC Infect Dis 18(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadi N, Ghanbarinejad V, Ommati MM, Jamshidzadeh A, Heidari R (2018) Taurine prevents mitochondrial membrane permeabilization and swelling upon interaction with manganese: implication in the treatment of cirrhosis-associated central nervous system complications. J Biochem Mol Toxicol 32(11):e22216

    Article  PubMed  Google Scholar 

  • Ahmadi N, Rezaee Z, Azarpira N, Zahedi S, Saeedi A, Jamshidzadeh A, Heidari R (2021b) A histopathological evaluation on the effect of captopril in cyclophosphamide-induced hemorrhagic cystitis. Trend Pharm Sci 7(1):35–48

    CAS  Google Scholar 

  • Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, Mousavi K, Khalvati B, Zhao Y, Sun J, Zong Y, Ommati MM, Heidari R (2021a) The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett 349:12-29

  • Akram J, Reza H, Farzaneh A, Maral R, Forouzan K, Mohammad Mehdi O, Maryam A, Roya F, Arastoo S, Negar A, Asma N (2016) Antimalarial drugs-induced hepatic injury in rats and the protective role of carnosine. Phaem Sci 22(3):170–180

    Google Scholar 

  • Aydın AF, Küçükgergin C, Özdemirler-Erata G, Koçak-Toker N, Uysal M (2009) The effect of carnosine treatment on prooxidant–antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology 11(1):103–109

    Article  PubMed  Google Scholar 

  • Bae O-N, Serfozo K, Baek S-H, Lee KY, Dorrance A, Rumbeiha W, Fitzgerald SD, Farooq MU, Naravelta B, Bhatt A, Majid A (2013) Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 44(1):205–212

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA (2012) Carnosine: new concept for the function of an old molecule. Biochemistry (Mosc) 77:313–326

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93(4):1803–1845

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev A, Gallant S, Sukhich G (1999) Carnosine, the protective, anti-aging peptide. Biosci Rep 19:581–587

  • Budzeń S, Rymaszewska J (2013) The biological role of carnosine and its possible applications in medicine. Adv Clin Exp Med 22(5):739–744

    PubMed  Google Scholar 

  • Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F (2019) Carnosine prevents Aβ-induced oxidative stress and inflammation in microglial cells: a key role of TGF-β1. Cells 8(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow C-W, Herrera Abreu MT, Suzuki T, Downey GP (2003) Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29(4):427–431

    Article  CAS  PubMed  Google Scholar 

  • Colzani M, Garzon D, Aldini G (2015) Carnosine and derivatives as inhibitors of protein covalent modifications induced by reactive carbonyl species. Imidazole Dipeptides, pp 139–169

  • Crush KG (1970) Carnosine and related substances in animal tissues. Comp Biochem Physiol 34(1):3–30

    Article  CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Genovese T, Failla M, Vecchio G, Fruciano M, Mazzon E, Di Paola R, Muià C, La Rosa C, Crimi N, Rizzarelli E, Vancheri C (2007a) Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am J Physiol 292(5):L1095–L1104

    CAS  Google Scholar 

  • Cuzzocrea S, Genovese T, Failla M, Vecchio G, Fruciano M, Mazzon E, Di Paola R, Muià C, La Rosa C, Crimi N, Rizzarelli E, Vancheri C (2007b) Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 292(5):L1095-1104

    Article  CAS  PubMed  Google Scholar 

  • Daubeuf F, Frossard N (2014) Eosinophils and the ovalbumin mouse model of asthma. Methods Mol Biol 1178:283–293

  • De Luca D, Minucci A, Zecca E, Piastra M, Pietrini D, Carnielli VP, Zuppi C, Tridente A, Conti G, Capoluongo ED (2009) Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration. Intensive Care Med 35(2):321–326

    Article  PubMed  Google Scholar 

  • Dursun N, Taşkın E, Öztürk F (2011) Protection against adriamycin-induced cardiomyopathy by carnosine in rats: role of endogenous antioxidants. Biol Trace Elem Res 143(1):412–424

    Article  CAS  PubMed  Google Scholar 

  • Fickert P, Rosenkranz AR (2020) Cholemic nephropathy reloaded. Semin Liver Dis 40(1):91–100

    Article  PubMed  Google Scholar 

  • Fouad AA, El-Rehany MA-A, Maghraby HK (2007) The hepatoprotective effect of carnosine against ischemia/reperfusion liver injury in rats. Eur J Pharmacol 572(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Fouad AA, Morsy MA, Gomaa W (2008) Protective effect of carnosine against cisplatin-induced nephrotoxicity in mice. Environ Toxicol Pharmacol 25(3):292–297

    Article  CAS  PubMed  Google Scholar 

  • Fouad AA, Qureshi HA, Yacoubi MT, Al-Melhim WN (2009) Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem Toxicol 47(11):2863–2870

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Katsumura Y, Lin M, Muroya Y, Hata K, Fujii K, Yokoya A, Hatano Y (2009) Free radical scavenging and radioprotective effects of carnosine and anserine. Radiat Phys Chem 78(12):1192–1197

    Article  CAS  Google Scholar 

  • Ghanbarinejad V, Ahmadi A, Niknahad H, Ommati MM, Heidari R (2019) Carnosine mitigates manganese mitotoxicity in an in vitro model of isolate brain mitochondria. Adv Pharm Bull 9(2):294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, Chen Y, Ommati MM, Heidari R (2021a) Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. Naunyn-Schmiedeberg’s Arch Pharmacol 394(6):1191–1203

    Article  CAS  Google Scholar 

  • Ghanbarinejad V, Ommati MM, Jia Z, Farshad O, Jamshidzadeh A, Heidari R (2021b) Disturbed mitochondrial redox state and tissue energy charge in cholestasis. J Biochem Mol Toxicol 35(9):e22846

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Suri SS, Janardhan KS, Caldwell S, Duke T, Singh B (2008) Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model. Respir Res 9(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12(20):2293–2315

    Article  CAS  PubMed  Google Scholar 

  • Guney Y, Turkcu UO, Hicsonmez A, Andrieu MN, Guney HZ, Bilgihan A, Kurtman C (2006) Carnosine may reduce lung injury caused by radiation therapy. Med Hypotheses 66(5):957–959

    Article  CAS  PubMed  Google Scholar 

  • Hamza RZ, El-Shenawy NS (2017) Anti-inflammatory and antioxidant role of resveratrol on nicotine-induced lung changes in male rats. Toxicol Rep 43:99–407

  • Hanidziar D, Robson SC (2021) Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol 321(2):G200–G212

    CAS  Google Scholar 

  • Heidari R, Niknahad H (2019) The role and study of mitochondrial impairment and oxidative stress in cholestasis. In: Vinken M (ed) Experimental cholestasis research. Springer, New York, NY, pp 117–132

    Google Scholar 

  • Heidari R, Babaei H, Eghbal MA (2013) Cytoprotective effects of organosulfur compounds against methimazole induced toxicity in isolated rat hepatocytes. Adv Pharm Bull 3(1):135–142

    PubMed  PubMed Central  Google Scholar 

  • Heidari R, Babaei H, Roshangar L, Eghbal MA (2014) Effects of enzyme induction and/or glutathione depletion on methimazole-induced hepatotoxicity in mice and the protective role of N-acetylcysteine. Adv Pharm Bull 4(1):21–28

    CAS  PubMed  Google Scholar 

  • Heidari R, Jamshidzadeh A, Keshavarz N, Azarpira N (2015a) Mitigation of methimazole-induced hepatic injury by taurine in mice. Sci Pharm 83(1):143–158

    Article  CAS  PubMed  Google Scholar 

  • Heidari R, Niknahad H, Jamshidzadeh A, Azarpira N, Bazyari M, Najibi A (2015b) Carbonyl traps as potential protective agents against methimazole-induced liver injury. J Biochem Mol Toxicol 29(4):173–181

    Article  CAS  PubMed  Google Scholar 

  • Heidari R, Esmailie N, Azarpira N, Najibi A, Niknahad H (2016a) Effect of thiol-reducing agents and antioxidants on sulfasalazine-induced hepatic injury in normotermic recirculating isolated perfused rat liver. Toxicol Res 32(2):133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari R, Jamshidzadeh A, Niknahad H, Safari F, Azizi H, Abdoli N, Ommati MM, Khodaei F, Saeedi A, Najibi A (2016c) The hepatoprotection provided by taurine and glycine against antineoplastic drugs induced liver injury in an ex vivo model of normothermic recirculating isolated perfused rat liver. Trend Pharm Sci 2(1):59–76

    CAS  Google Scholar 

  • Heidari R, Rasti M, Shirazi Yeganeh B, Niknahad H, Saeedi A, Najibi A (2016d) Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine. Bioimpacts 6(1):3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari R, Moezi L, Asadi B, Ommati MM, Azarpira N (2017) Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition 5(3):109–117

    Article  Google Scholar 

  • Heidari R, Jafari F, Khodaei F, Shirazi Yeganeh B, Niknahad H (2018b) Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology 23(4):351–361

    Article  CAS  PubMed  Google Scholar 

  • Heidari R, Jafari F, Khodaei F, Yeganeh BS, Niknahad H (2018c) Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology 23(4):351–361

    Article  CAS  PubMed  Google Scholar 

  • Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H (2018d) Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp HEPATOL 4(2):72–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari R, Arabnezhad MR, Ommati MM, Azarpira N, Ghodsimanesh E, Niknahad H (2019a) Boldine supplementation regulates mitochondrial function and oxidative stress in a rat model of hepatotoxicity. Pharm Sci 25(1):1–10

    Article  Google Scholar 

  • Heidari R, Jamshidzadeh A, Ommati MM, Rashidi E, Khodaei F, Sadeghi A, Hosseini A, Niknahad H (2019c) Ammonia-induced mitochondrial impairment is intensified by manganese co-exposure: relevance to the management of subclinical hepatic encephalopathy and cirrhosis-associated brain injury. Clin Exp HEPATOL 5(2):109–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari R, Mohammadi H, Ghanbarinejad V, Ahmadi A, Ommati MM, Niknahad H, Jamshidzadeh A, Azarpira N, Abdoli N (2019e) Proline supplementation mitigates the early stage of liver injury in bile duct ligated rats. J Basic Clin Physiol Pharmacol 30(1):91–101

    Article  CAS  Google Scholar 

  • Heidari R, Ahmadi A, Ommati MM, Niknahad H (2020) Methylene Blue improves mitochondrial function in the liver of cholestatic rats. Trend Pharm Sci 6(2):73–86

    Google Scholar 

  • Heidari R, Jamshidzadeh A, Niknahad H, Mardani E, Ommati MM, Azarpira N, Khodaei F, Zarei A, Ayarzadeh M, Mousavi S, Abdoli N, Yeganeh BS, Saeedi A, Najibi A (2016b) Effect of taurine on chronic and acute liver injury: focus on blood and brain ammonia. Toxicol Rep 3:870–879

  • Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Esfandiari A, Azarpira N, Niknahad H (2018a) Dithiothreitol supplementation mitigates hepatic and renal injury in bile duct ligated mice: potential application in the treatment of cholestasis-associated complications. Biomed Pharmacother 99:1022–1032

  • Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A (2019b) The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother 109:103–111

  • Heidari R, Mandegani L, Ghanbarinejad V, Siavashpour A, Ommati MM, Azarpira N, Najibi A, Niknahad H (2019d) Mitochondrial dysfunction as a mechanism involved in the pathogenesis of cirrhosis-associated cholemic nephropathy. Biomed Pharmacother 109:271–280

  • Herraez E, Lozano E, Poli E, Keitel V, De Luca D, Williamson C, Marin JJG, Macias RIR (2014) Role of macrophages in bile acid-induced inflammatory response of fetal lung during maternal cholestasis. J Mol Med 92(4):359–372

    Article  CAS  PubMed  Google Scholar 

  • Hipkiss AR, Preston JE, Himsworth DTM, Worthington VC, Keown M, Michaelis J, Lawrence J, Mateen A, Allende L, Eagles PAM et al (1998) Pluripotent protective effects of carnosine, a naturally occurring dipeptidea. Ann N Y Acad Sci 854(1):37–53

    Article  CAS  PubMed  Google Scholar 

  • Hipkiss AR, Brownson C, Carrier MJ (2001) Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mech Ageing Dev 122(13):1431–1445

    Article  CAS  PubMed  Google Scholar 

  • Hu Z-H, Kong Y-Y, Ren J-J, Huang T-J, Wang Y-Q, Liu L-X (2020) Kidney and lung tissue modifications after BDL-induced liver injury in mice are associated with increased expression of IGFBPrP1 and activation of the NF-κB inflammation pathway. Int J Clin Exp Pathol 13(2):192–202

    PubMed  PubMed Central  Google Scholar 

  • Impellizzeri D, Siracusa R, Cordaro M, Peritore AF, Gugliandolo E, D’amico R, Fusco R, Crupi R, Rizzarelli E, Cuzzocrea S, Vaccaro S, Pulicetta M, Greco V, Sciuto S, Schiavinato A, Messina L, Di Paola R (2020) Protective effect of a new hyaluronic acid -carnosine conjugate on the modulation of the inflammatory response in mice subjected to collagen-induced arthritis. Biomed Pharmacother 125110023

  • Jaeschke H, Hasegawa T (2006) Role of neutrophils in acute inflammatory liver injury. Liver Int 26(8):912–919

    Article  CAS  PubMed  Google Scholar 

  • Jamshidzadeh A, Abdoli N, Niknahad H, Azarpira N, Mardani E, Mousavi S, Abasvali M, Heidari R (2017a) Taurine alleviates brain tissue markers of oxidative stress in a rat model of hepatic encephalopathy. Trend Pharm Sci 3(3):181–192

    CAS  Google Scholar 

  • Jamshidzadeh A, Heidari R, Latifpour Z, Ommati MM, Abdoli N, Mousavi S, Azarpira N, Zarei A, Zarei M, Asadi B, Abasvali M, Yeganeh Y, Jafari F, Saeedi A, Najibi A, Mardani E (2017c) Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin Res Hepatol Gastroenterol 41(4):424–434

    Article  CAS  PubMed  Google Scholar 

  • Jamshidzadeh A, Heidari R, Abasvali M, Zarei M, Ommati MM, Abdoli N, Khodaei F, Yeganeh Y, Jafari F, Zarei A, Latifpour Z, Mardani E, Azarpira N, Asadi B, Najibi A (2017b) Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother 86:514–520

  • Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, Selthofer-Relatić K, Kibel A, Lukinac A, Kolar L, Kralik G, Kralik Z, Széchenyi A, Jozanović M, Galović O, Medvidović-Kosanović M, Drenjančević I (2021) Carnosine, small but mighty—prospect of use as functional ingredient for functional food formulation. Antioxidants 10(7):1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Jüngst C, Lammert F (2013) Cholestatic liver disease. Dig Dis 31(1):152–154

    Article  PubMed  Google Scholar 

  • Klebanov GI, Teselkin YuO, n, Babenkova IV, Popov IN, Levin G, Tyulina OV, Boldyrev AA, Vladimirov YuA n, (1997) Evidence for a direct interaction of superoxide anion radical with carnosine. Biochem Mol Biol Int 43(1):99–106

    CAS  PubMed  Google Scholar 

  • Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 85(9):3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota M, Kobayashi N, Sugizaki T, Shimoda M, Kawahara M, Tanaka K-i (2020) Carnosine suppresses neuronal cell death and inflammation induced by 6-hydroxydopamine in an in vitro model of Parkinson’s disease. PLoS ONE 15(10):e0240448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuloglu N, Sönmez MF (2015) A biochemical and immunohistochemical study of the protective effects of carnosine for carbon tetrachloride induced liver injury in rats. Biotech Histochem 90(8):608–614

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Miyawaki H, Bobst EV, Hester JD, Ashraf M, Bobst AM (1999) Improved functional recovery of ischemic rat hearts due to singlet oxygen scavengers histidine and carnosine. J Mol Cell Cardiol 31(1):113–121

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-t, Hsu C-c, Lin M-h, Liu K-s, Yin M-c (2005) Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol 513(1):145–150

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chiang JYL (2017) Bile acid-induced liver injury in cholestasis. In: Ding W-X, Yin X-M (eds) Cellular injury in liver diseases. Springer International Publishing, Cham, pp 143-172

  • Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H (2003) Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med 31(4):1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Mousavi K, Niknahad H, Ghalamfarsa A, Mohammadi H, Azarpira N, Ommati MM, Heidari R (2020) Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin Exp HEPATOL 6(3):207–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, Shi X, Chen Y, Ahmadi A, Azarpira N, Khalvati B, Ommati MM, Heidari R (2021) The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res 10(4):911–927

    Article  Google Scholar 

  • Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, Yan F, Ma Y, Xu D, Tang Z, Ommati MM, Heidari R (2022) Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp HEPATOL 8(3):195–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Niknahad H, Heidari R, Alzuhairi AM, Najibi A (2015) Mitochondrial dysfunction as a mechanism for pioglitazone-induced injury toward HepG2 cell line. Pharm Sci 20(4):169–174

    Google Scholar 

  • Niknahad H, Heidari R, Mohammadzadeh R, Ommati MM, Khodaei F, Azarpira N, Abdoli N, Zarei M, Asadi B, Rasti M, Yeganeh BS, Taheri V, Saeedi A, Najibi A (2017) Sulfasalazine induces mitochondrial dysfunction and renal injury. Ren Fail 39(1):745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada S, Hasegawa S, Hasegawa H, Ainai A, Atsuta R, Ikemoto K, Sasaki K, Toda S, Shirabe K, Takahara M, Harada S, Morishima T, Ichiyama T (2013) Analysis of bronchoalveolar lavage fluid in a mouse model of bronchial asthma and H1N1 2009 infection. Cytokine 63(2):194–200

    Article  CAS  PubMed  Google Scholar 

  • Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, Abdoli N (2017) N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PharmaNutrition 5(4):141–147

    Article  Google Scholar 

  • Ommati MM, Heidari R, Ghanbarinejad V, Abdoli N, Niknahad H (2019c) Taurine treatment provides neuroprotection in a mouse model of manganism. Biol Trace Elem Res 190(2):384–395

    Article  CAS  PubMed  Google Scholar 

  • Ommati MM, Heidari R, Ghanbarinejad V, Aminian A, Abdoli N, Niknahad H (2020b) The neuroprotective properties of carnosine in a mouse model of manganism is mediated via mitochondria regulating and antioxidative mechanisms. Nutr Neurosci 23(9):731–743

    Article  PubMed  Google Scholar 

  • Ommati MM, Heidari R, Zamiri MJ, Sabouri S, Zaker L, Farshad O, Jamshidzadeh A, Mousapour S (2020c) The footprints of oxidative stress and mitochondrial impairment in arsenic trioxide-induced testosterone release suppression in pubertal and mature F1-male BALB/c mice via the downregulation of 3β-HSD, 17β-HSD, and CYP11a expression. Biol Trace Elem Res 195(1):125–134

    Article  CAS  PubMed  Google Scholar 

  • Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R (2021a) N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress 24(2):213–228

    Article  CAS  PubMed  Google Scholar 

  • Ommati MM, Attari H, Siavashpour A, Shafaghat M, Azarpira N, Ghaffari H, Moezi L, Heidari R (2021b) Mitigation of cholestasis-associated hepatic and renal injury by edaravone treatment: evaluation of its effects on oxidative stress and mitochondrial function. Liver Research 5(3):181–193

    Article  CAS  Google Scholar 

  • Ommati MM, Mohammadi H, Mousavi K, Azarpira N, Farshad O, Dehghani R, Najibi A, Kamran S, Niknahad H, Heidari R (2021c) Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. Liver Res 5(3):171–180

    Article  CAS  Google Scholar 

  • Ommati MM, Jamshidzadeh A, Saeed M, Rezaei M, Heidari R (2022b) Dextromethorphan improves locomotor activity and decreases brain oxidative stress and inflammation in an animal model of acute liver failure. Clin Exp HEPATOL 8(3):178–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Ommati MM, Li H, Jamshidzadeh A, Khoshghadam F, Retana-Márquez S, Lu Y, Farshad O, Nategh Ahmadi MH, Gholami A, Heidari R (2022c) The crucial role of oxidative stress in non-alcoholic fatty liver disease-induced male reproductive toxicity: the ameliorative effects of Iranian indigenous probiotics. Naunyn-Schmiedeberg’s Arch Pharmacol 395(2):247–265

    Article  CAS  Google Scholar 

  • Ommati MM, Mobasheri A, Ma Y, Xu D, Tang Z, Manthari RK, Abdoli N, Azarpira N, Lu Y, Sadeghian I, Mousavifaraz A, Nadgaran A, Nikoozadeh A, Mazloomi S, Mehrabani PS, Rezaei M, Xin H, Mingyu Y, Niknahad H, Heidari R (2022d) Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. Naunyn-Schmiedeberg’s Arch Pharmacol 395(12):1557–1572

    Article  CAS  Google Scholar 

  • Ommati MM, Farshad O, Jamshidzadeh A, Heidari R (2019a) Taurine enhances skeletal muscle mitochondrial function in a rat model of resistance training. PharmaNutrition 9100161

  • Ommati MM, Farshad O, Niknahad H, Arabnezhad MR, Azarpira N, Mohammadi HR, Haghnegahdar M, Mousavi K, Akrami S, Jamshidzadeh A, Heidari R (2019b) Cholestasis-associated reproductive toxicity in male and female rats: the fundamental role of mitochondrial impairment and oxidative stress. Toxicol Lett 316:60–72

  • Ommati MM, Heidari R, Manthari RK, Tikka Chiranjeevi S, Niu R, Sun Z, Sabouri S, Zamiri MJ, Zaker L, Yuan J, Wang J, Zhang J, Wang J (2019d) Paternal exposure to arsenic resulted in oxidative stress, autophagy, and mitochondrial impairments in the HPG axis of pubertal male offspring. Chemosphere 236:124325

  • Ommati MM, Farshad O, Mousavi K, Jamshidzadeh A, Azmoon M, Heidari S, Azarpira N, Niknahad H, Heidari R (2020a) Betaine supplementation mitigates intestinal damage and decreases serum bacterial endotoxin in cirrhotic rats. PharmaNutrition 12:100179

  • Ommati MM, Shi X, Li H, Zamiri MJ, Farshad O, Jamshidzadeh A, Heidari R, Ghaffari H, Zaker L, Sabouri S, Chen Y (2020d) The mechanisms of arsenic-induced ovotoxicity, ultrastructural alterations, and autophagic related paths: an enduring developmental study in folliculogenesis of mice. Ecotoxicol Environ Saf 204:110973

  • Ommati MM, Abdoli N, Firoozi M, Akhlagh A, Mazloomi S, Mousavi K, Niknahad H, Heidari R (2022a) Sildenafil blunts lung inflammation and oxidative stress in a rat model of cholestasis. Pharm Sci In-Press

  • Patil A, Mayo MJ (2008) Complications of cholestasis. In: Md KDL, Md JAT (eds) Cholestatic liver disease. Humana Press, pp 155-169

  • Prokopieva VD, Yarygina EG, Bokhan NA, Ivanova SA (2016) Use of carnosine for oxidative stress reduction in different pathologies. Oxid Med Cell Longev 2016:2939087

  • Raffo AJ, Perlman H, Chen M-W, Day ML, Streitman JS, Buttyan R (1995) Overexpression of Bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55(19):4438–4445

    CAS  PubMed  Google Scholar 

  • Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T (2015) Redox-fibrosis: impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol 6:344–352

  • Rodríguez-Garay EA (2003) Cholestasis: human disease and experimental animal models. Ann Hepatol 2(4):150–158

    Article  PubMed  Google Scholar 

  • Shafaroodi H, Ebrahimi F, Moezi L, Hashemi M, Doostar Y, Ghasemi M, Dehpour AR (2010) Cholestasis induces apoptosis in mice cardiac cells: the possible role of nitric oxide and oxidative stress. Liver Int 30(6):898–905

    Article  CAS  PubMed  Google Scholar 

  • Shafiekhani M, Ommati MM, Azarpira N, Heidari R, Salarian AA (2019) Glycine supplementation mitigates lead-induced renal injury in mice. J Exp Pharmacol 11:15–22

  • Shikata F, Sakaue T, Nakashiro K-i, Okazaki M, Kurata M, Okamura T, Okura M, Ryugo M, Nakamura Y, Yasugi T, Higashiyama S, Izutani H (2014) Pathophysiology of lung injury induced by common bile duct ligation in mice. PLoS ONE 9(4):e94550

    Article  PubMed  PubMed Central  Google Scholar 

  • Siavashpour A, Khalvati B, Azarpira N, Mohammadi H, Niknahad H, Heidari R (2020) Poly (ADP-ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats. Toxicol Lett 330:144–158

  • Soliman KM, Abdul-Hamid M, Othman AI (2007) Effect of carnosine on gentamicin-induced nephrotoxicity. Med Sci Technol 13(3):BR73-BR83

  • Sun C, Wu Q, Zhang X, He Q, Zhao H (2017) Mechanistic evaluation of the protective effect of carnosine on acute lung injury in sepsis rats. Pharmacology 100(5–6):292–300

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K-I, Sugizaki T, Kanda Y, Tamura F, Niino T, Kawahara M (2017b) Preventive effects of carnosine on lipopolysaccharide-induced lung injury. Sci Rep 7(1):42813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K-I, Sugizaki T, Kanda Y, Tamura F, Niino T, Kawahara M (2017a) Preventive effects of carnosine on lipopolysaccharide-induced lung injury. Sci Rep 7:42813

  • Thimmulappa RK, Chattopadhyay I, Rajasekaran S (2019) Oxidative stress mechanisms in the pathogenesis of environmental lung diseases. Oxid Stress Lung Dis 103–137

  • Tsai S-J, Kuo W-W, Liu W-H, Yin M-C (2010) Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58(21):11510–11516

    Article  CAS  PubMed  Google Scholar 

  • Vistoli G, Colzani M, Mazzolari A, Gilardoni E, Rivaletto C, Carini M, Aldini G (2017) Quenching activity of carnosine derivatives towards reactive carbonyl species: focus on α-(methylglyoxal) and β-(malondialdehyde) dicarbonyls. Biochem Biophys Res Commun 492(3):487–492

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Yu J, Zhang Z, Liu D, Fan Y, Wu Y, Ma H, Wang C, Hong Z (2022) AMPK pathway is implicated in low level lead-induced pubertal testicular damage via disordered glycolysis. Chemosphere 291:132819

  • Xu T, Wang C, Zhang R, Xu M, Liu B, Wei D, Wang G, Tian S (2015) Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury. J Gen Virol 96(Pt 10):2939–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalaza M, Akin I, Altiner S, Ayral PA, Yazihan N (2022) Is carnosine effective to alleviate lung injury: a systematic review. Turk J Biochem 47(1):1–7

    Article  CAS  Google Scholar 

  • Yan S-l, Wu S-t, Yin M-c, Chen H-t, Chen H-c (2009) Protective effects from carnosine and histidine on acetaminophen-induced liver injury. J Food Sci 74(8):259–265

    Article  Google Scholar 

  • Yu L, Ding Y, Huang T, Huang X (2014) Effect of bile acid on fetal lung in rat model of intrahepatic cholestasis of pregnancy. Int J Endocrinol 2014:e308274

  • Zecca E, Costa S, Lauriola V, Vento G, Papacci P, Romagnoli C (2004) Bile acid pneumonia: a “new” form of neonatal respiratory distress syndrome? Pediatrics 114(1):269–272

    Article  PubMed  Google Scholar 

  • Zecca E, De Luca D, Baroni S, Vento G, Tiberi E, Romagnoli C (2008) Bile acid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study. Pediatrics 121(1):e146-149

    Article  PubMed  Google Scholar 

Download references

Funding

Natural Science Foundation of Shanxi financially supported this project (20210302124411). Grants 23040/23028/23031/23701 from the Vice-Chancellor of Research Affairs, Shiraz University of Medical Sciences, Shiraz, Iran, were also used for this investigation.

Author information

Authors and Affiliations

Authors

Contributions

M.M. Ommati, R. Heidari, N. Azarpira, A. Ghiasvand, and H. Niknahad were involved in funding acquisition, subject conceptualization, validation, methodology, data analysis, resources management, project administration, and supervision, writing the original draft, and review and editing the manuscript. S. Sabouri, A. Arjmand, S. Alidaee, S. Mazloomi, A. Najibi, A. Nikoozadeh, P. Ahmadi, H. Rezaei, F. Khodaei, and N. Abdoli were involved in the literature review, data visualization, data analysis, and writing the manuscript draft. S. Alidaee, S. Mazloomi, A. Najibi, A. Nikoozadeh, P. Ahmadi, H. Rezaei, and F. Khodaei were involved in data collection. All authors read and confirmed the final version of this manuscript. The authors announced that all data were generated in-house, and no paper mill was used.

Corresponding author

Correspondence to Reza Heidari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The institutional ethics committee approved all experimental animal procedures at Shiraz University of Medical Sciences, Shiraz, Iran (IR.SUMS.REC.1399.1353). This study does not include any human participants.

Consent to participate

Not applicable. This study contains no human data.

Consent for publication

Not applicable. This study contains no human data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ommati, M.M., Sabouri, S., Niknahad, H. et al. Pulmonary inflammation, oxidative stress, and fibrosis in a mouse model of cholestasis: the potential protective properties of the dipeptide carnosine. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1129–1142 (2023). https://doi.org/10.1007/s00210-023-02391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02391-y

Keywords

Navigation