Skip to main content
Log in

Effect of rapamycin treatment in human seminoma TCam-2 cells through inhibition of G1-S transition

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Mammalian target of rapamycin (mTOR) is an important serine/threonine kinase that plays a critical role in several processes including cell cycle, protein synthesis, and energy metabolism. Due to its multiple roles and general dysregulation in cancer, the mTOR pathway is an important target in cancer therapy. However, studies on mTOR activity in seminoma are limited. Therefore, our aim was to investigate the expression of mTOR signaling pathway proteins in the TCam-2 cell line after rapamycin treatment. TCam-2 cells were treated with different concentrations of rapamycin (control (no rapamycin treatment), 4 nM, 20 nM, 100 nM, 500 nM, and 1000 nM rapamycin) for 48 h and 72 h. mTOR, p-mTOR, P70S6K, p-P70S6K, proliferating cell nuclear antigen (PCNA), and caspase-3 expression levels were analyzed by western blot. Apotosis and cell cycle were analyzed by flow cytometry. After 48 h of rapamycin administration, mTOR activity was significantly decreased at 1000 nM (p < 0.05). In addition, P70S6K acitivity significantly decreased in groups at all rapamycin concentrations (***p < 0.001, ****p < 0.0001). After 72 h of rapamycin administration, mTOR pathway activity were significantly decreased at 100, 500, and 1000 nM rapamycin-treated groups (p < 0.05). Moreover, P70S6K expression decreased in all treatment groups (****p < 0.0001). Caspase-3 expression were similar in all groups. While PCNA expression tended to decrease at 48 h in a dose-dependent manner, this decrease was not significant. We detected decreased PCNA expression at 1000 nM rapamycin at 72 h (p < 0.05). The rate of apoptosis increased especially at 1000 nM rapamycin at 72 h (***p < 0.001). On the other hand, according to the results of the cell cycle experiment, G1 phase arrest was detected at all rapamycin doses at 48 and 72 h (***p < 0.001). Our study indicated that 1000 nM rapamycin may inhibit TCam-2 seminoma cells growth by halting cell proliferation through inhibition of G1-S transition. Therefore, we believe that the findings obtained will contribute to the development of new treatment approaches for seminoma patients in the future and in the process of restoring testicular functions and preserving fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

We would like to thank Prof. Dr. Hubert Schorle. TCam-2 cell line obtained from Prof. Dr. Hubert Schorle, Department of Developmental Pathology and Department of Molecular Diagnostics Institute of Pathology, Bonn Medical School, Germany.

References

  • Amornphimoltham P, Leelahavanichkul K, Molinolo A, Patel V, Gutkind JS (2008) Inhibition of Mammalian target of rapamycin by rapamycin causes the regression of carcinogen-induced skin tumor lesions. Clin Cancer Res 14:8094–8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aru B, Günay A, Şenkuytu E, Yanıkkaya Demirel G, Gürek AG, Atilla D (2020) A translational study of a silicon phthalocyanine substituted with a histone deacetylase inhibitor for photodynamic therapy. ACS Omega 5:25854–25867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aru B, Güzelmeric E, Akgül A, Demirel GY, Kırmızıbekmez H (2019) Antiproliferative activity of chemically characterized propolis from turkey and its mechanisms of action. Chem Biodivers 16:e1900189

    Article  PubMed  Google Scholar 

  • Belloc F, Belaud-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, Durrieu F, Lacombe F (2000) Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40:151–160

    Article  CAS  PubMed  Google Scholar 

  • Chen KS, Fustino NJ, Shukla AA, Stroup EK, Budhipramono A, Ateek C, Stuart SH, Yamaguchi K, Kapur P, Frazier AL, Lum L, Looijenga LHJ, Laetsch TW, Rakheja D, Amatruda JF (2018) EGF receptor and mTORC1 are novel therapeutic targets in nonseminomatous germ cell tumors. Mol Cancer Ther 17:1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12:325–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang GG, Abraham RT (2007) Targeting the mTOR signaling network in cancer. Trends Mol. Med. 13:433–442

    Article  CAS  PubMed  Google Scholar 

  • de Jong J, Stoop H, Gillis AJ, Hersmus R, van Gurp RJ, van de Geijn GJ, van Drunen E, Beverloo HB, Schneider DT, Sherlock JK, Baeten J, Kitazawa S, van Zoelen EJ, van Roozendaal K, Oosterhuis JW, Looijenga LH (2008) Further characterization of the first seminoma cell line TCam-2. Genes Chromosom. Cancer 47:185–196

    Article  PubMed  Google Scholar 

  • Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert D, Nettersheim D, Heukamp LC, Kitazawa S, Biermann K, Schorle H (2008) TCam-2 but not JKT-1 cells resemble seminoma in cell culture. Cell Tissue Res 331:529–538

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Wang Y, Tan Z, Zhou J, Kitazawa R, Jiang X, Tang Y, Yang J (2016) TDRG1 regulates chemosensitivity of seminoma TCam-2 cells to cisplatin via PI3K/Akt/mTOR signaling pathway and mitochondria-mediated apoptotic pathway. Cancer Biol Ther 17:741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory CD, Paterson M (2018) An apoptosis-driven ‘onco-regenerative niche’: roles of tumour-associated macrophages and extracellular vesicles. Philos Trans R Soc Lond Ser B Biol Sci 373

  • Hausch F, Kozany C, Theodoropoulou M, Fabian AK (2013) FKBPs and the Akt/mTOR pathway. Cell Cycle 12:2366–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huyghe E, Zairi A, Nohra J, Kamar N, Plante P, Rostaing L (2007) Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transplant Int Off J Eur Soc Organ Transplant 20:305–311

    Article  CAS  Google Scholar 

  • Jacobs LA, Vaughn DJ (2012) Hypogonadism and infertility in testicular cancer survivors. J National Compr Cancer Netw: JNCCN 10:558–563

    Article  Google Scholar 

  • Lin X, Han L, Weng J, Wang K, Chen T (2018) Rapamycin inhibits proliferation and induces autophagy in human neuroblastoma cells. Biosci Rep 38

  • Mannuel HD, Hussain A (2010) Update on testicular germ cell tumors. Curr. Opin. Oncol. 22:236–241

    Article  PubMed  Google Scholar 

  • Marqués L, Núñez-Córdoba JM, Aguado L, Pretel M, Boixeda P, Nagore E, Baselga E, Redondo P (2015) Topical rapamycin combined with pulsed dye laser in the treatment of capillary vascular malformations in Sturge-Weber syndrome: phase II, randomized, double-blind, intraindividual placebo-controlled clinical trial. J Am Acad Dermatol 72:151–158.e151

    Article  PubMed  Google Scholar 

  • Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr. Opin. Cell Biol. 17:158–166

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Gotoh A, Kamidono S, Kitazawa S (1993) Establishment and characterization of a new human testicular germ cell tumor cell line (TCam-2). Nihon Hinyokika Gakkai Zasshi Japan J Urol 84:1211–1218

    CAS  Google Scholar 

  • Moreira BP, Oliveira PF, Alves MG (2019) Molecular Mechanisms Controlled by mTOR in Male Reproductive System. Int J Mol Sci 20:1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Murugan AK (2019) mTOR: Role in cancer, metastasis and drug resistance. Semin. Cancer Biol. 59:92–111

    Article  CAS  PubMed  Google Scholar 

  • Nettersheim D, Westernströer B, Haas N, Leinhaas A, Brüstle O, Schlatt S, Schorle H (2012) Establishment of a versatile seminoma model indicates cellular plasticity of germ cell tumor cells. Genes Chromosom. Cancer 51:717–726

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Wei J, Gan Y, Yang J, Jiang X, Kitazawa R, Xiang Y, Dai Y, Tang Y (2019) Testis developmental related gene 1 regulates the chemosensitivity of seminoma TCam-2 cells to cisplatin via autophagy. J. Cell. Mol. Med. 23:7773–7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponticelli C (2004) The pleiotropic effects of mTor inhibitors. J Nephrol 17:762–768

    CAS  PubMed  Google Scholar 

  • Qian B, Yao Z, Yang Y, Li N, Wang Q (2021) Downregulation of SDCBP inhibits cell proliferation and induces apoptosis by regulating PI3K/AKT/mTOR pathway in gastric carcinoma. Biotechnol Appl Biochem

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  • Seervi M, Xue D (2015) Mitochondrial cell death pathways in Caenorhabiditis elegans. Curr. Top. Dev. Biol. 114:43–65

    Article  CAS  PubMed  Google Scholar 

  • Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504–3513

    PubMed  Google Scholar 

  • Shafer A, Zhou C, Gehrig PA, Boggess JF, Bae-Jump VL (2010) Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis. Int. J. Cancer 126:1144–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO (2011) Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 108:E1204–E1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Singhal SS, Jain D, Singhal P, Awasthi S, Singhal J, Horne D (2017) Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer. Biochim Biophys Acta Rev Cancer 1868:167–175

    Article  CAS  PubMed  Google Scholar 

  • Song J, Salek-Ardakani S, So T, Croft M (2007) The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nat. Immunol. 8:64–73

    Article  CAS  PubMed  Google Scholar 

  • Strzalka W, Ziemienowicz A (2011) Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann. Bot. 107:1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Suster S, Moran CA, Dominguez-Malagon H, Quevedo-Blanco P (1998) Germ cell tumors of the mediastinum and testis: a comparative immunohistochemical study of 120 cases. Hum. Pathol. 29:737–742

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Li X, Zhang J (2019) mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 20

  • Treloar KK, Simpson MJ (2013) Sensitivity of edge detection methods for quantifying cell migration assays. PLoS One 8:e67389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang CK, Qi H, Liu LF, Zheng XF (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov. Today 12:112–124

    Article  CAS  PubMed  Google Scholar 

  • Varghese J, Khandre NS, Sarin A (2003) Caspase-3 activation is an early event and initiates apoptotic damage in a human leukemia cell line. Apoptosis : Int J Programmed Cell Death 8:363–370

    Article  CAS  Google Scholar 

  • Varma S, Khandelwal RL (2007) Effects of rapamycin on cell proliferation and phosphorylation of mTOR and p70S6K in HepG2 and HepG2 cells overexpressing constitutively active Akt/PKB. Biochim. Biophys. Acta Gen. Subj. 1770:71–78

    Article  CAS  Google Scholar 

  • Wang T, Zhang FL, Zhao Y, Guo DD, Yang R (2021) [Effects of miR-125b-5p on the proliferation and apoptosis of human hemangioma endothelial cells HemES and its mechanism]. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi =. Chin J Appl Phys 37:247–253

    Google Scholar 

  • Wang Y, Gan Y, Tan Z, Zhou J, Kitazawa R, Jiang X, Tang Y, Yang J (2016) TDRG1 functions in testicular seminoma are dependent on the PI3K/Akt/mTOR signaling pathway. OncoTargets Ther 9:409–420

    CAS  Google Scholar 

  • Wei J, Gan Y, Peng D, Jiang X, Kitazawa R, Xiang Y, Dai Y, Tang Y (2018) Long non-coding RNA H19 promotes TDRG1 expression and cisplatin resistance by sequestering miRNA-106b-5p in seminoma. Cancer Med 7:6247–6257

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Yaba A, Bozkurt ER, Demir N (2016) mTOR expression in human testicular seminoma. Andrologia 48:702–707

    Article  CAS  PubMed  Google Scholar 

  • Yaba A, Demir N (2012) The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovarian Res 5:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Ulbright TM (2012) Difficult differential diagnoses in testicular pathology. Arch. Pathol. Lab. Med. 136:435–446

    Article  PubMed  Google Scholar 

  • Young JC, Jaiprakash A, Mithraprabhu S, Itman C, Kitazawa R, Looijenga LH, Loveland KL (2011) TCam-2 seminoma cell line exhibits characteristic foetal germ cell responses to TGF-beta ligands and retinoic acid. Int. J. Androl. 34:e204–e217

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Yaba A, Kasiman C, Thomson T, Johnson J (2011) mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 6:e21415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YM, Zhou Q, Xu Y, Lai XY, Huang H (2008) Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition. Acta Pharmacol. Sin. 29:481–488

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Jiang Y (2015) mTOR inhibitors at a glance. Mol. Cell. Pharmacol. 7:15–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Huang S (2010) The complexes of mammalian target of rapamycin. Curr. Protein Pept. Sci. 11:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Huang S (2011) Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr. Protein Pept. Sci. 12:30–42

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TO, CSE, and AY; data curation: TO, CSE, BA, EY; formal analysis: TO, CSE, BA, EY, AY; investigation: TO, CSE, BA, EY, AY; methodology: TO, CSE, BA, EY, AY; software: TO, CSE, BA, EY, AY; supervision: AY; validation: TO, CSE; visualization: TO, CSE; roles/writing—original draft: TO, CSE, BA, EY, GYD, AY; writing—review and editing: TO, CSE, BA, EY, GYD, AY.

Corresponding author

Correspondence to Aylin Yaba.

Ethics declarations

Ethical approval

Our study does not include human and animal experiments. TCam-2 cell line was used for our study. There is no ethics committee requirement.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Figure 1

İmages of TCam-2 cells for control and all rapamycin concentrations (4, 20, 100, 500, and 1000 nM) before rapamycin treatment (0h), 48 hours after rapamycin treatment (48h), and 72 hours after rapamycin treatment (72h). (PNG 3997 kb)

High resolution image (TIF 5466 kb)

Supplementary Figure 2

Wound healing Strength Assay of TCam-2 cells for control and all rapamycin concentrations (4, 20, 100, 500 and 1000 nM) before rapamycin treatment (0h), 48 hours after rapamycin treatment (48h), and 72 hours after rapamycin treatment (72h) experimental images. (PNG 3809 kb)

High resolution image (TIF 5413 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onel, T., Erdogan, C.S., Aru, B. et al. Effect of rapamycin treatment in human seminoma TCam-2 cells through inhibition of G1-S transition. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1009–1018 (2023). https://doi.org/10.1007/s00210-022-02371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02371-8

Keywords

Navigation