Skip to main content

Advertisement

Log in

A review of basic to clinical studies of the association between hyperammonemia, methamphetamine

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Methamphetamine (METH), an addictive psychostimulant drug, is the second most widely used type of drug all around the world. METH abusers are more likely to develop a psycho-neurological complication. Hyperammonemia (HAM) causes neuropsychiatric illnesses such as mental state changes and episodes of acute encephalopathy. Recently, there are some shreds of evidence about the relationship between METH complication and HAM. Both METH intoxication and HAM could induce psychosis, agitation, memory impairment, and psycho-neuronal disorders. They also have similar mechanisms of neuronal damages, such as excitotoxicity, oxidative stress, mitochondrial impairments, and inflammation responses, which can subsequently increase the glutamate level of the brain. Hence, the basic to clinical studies of the association between HAM and METH are reviewed by monitoring six case studies and a good body of animal studies literature. All instances of METH-associated HAM had changes in mental state and some level of confusion that were improved when the ammonia serum level returned to the normal level. Furthermore, most of them had typical vital signs. Several studies suggested some sources for METH-associated HAM, including METH-induced liver and renal damages, muscular hyperactivity, gut bacterial overgrowth, co-abuse of other substances, and using some forms of NH3 in METH cooking. In conclusion, it seems that mental status changes in METH abusers may be related to ammonia intoxication or HAM; therefore, it is important to assess the serum level of ammonia in METH intoxicated patients and resolve it.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbasi Jennatabad N, Fayyazi Bordbar MR, Etemad L, Eizadi-Mood N, Jomehpour H, Moshiri M Methamphetamine-associated hyperammonemic encephalopathy: case reports. Clinical Psychopharmacology In Press.

  • Ago Y, Takuma K, Matsuda T (2016) Methamphetamine-induced hyperlocomotion: a focus on the role of the prefrontal serotonergic system. Neuropathology of Drug Addictions and Substance Misuse. Elsevier, pp. 320–328

  • Ahmadi J, Sahraian A, Dastgheib SA, Mowla A, Ahmadzadeh A (2015) Management of methamphetamine-induced psychosis by 8 sessions of ECT. young 11: 13

  • Ajjimaporn A, Phansuwan-Pujito P, Ebadi M, Govitrapong P (2007) Zinc protects SK-N-SH cells from methamphetamine-induced α-synuclein expression. Neurosci Lett 419:59–63

    Article  CAS  PubMed  Google Scholar 

  • Ajjimaporn A, Shavali S, Ebadi M, Govitrapong P (2008) Zinc rescues dopaminergic SK–N–SH cell lines from methamphetamine-induced toxicity. Brain Res Bull 77:361–366

    Article  CAS  PubMed  Google Scholar 

  • Ajjimaporn A, Swinscoe J, Shavali S, Govitrapong P, Ebadi M (2005) Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells. Brain Res Bull 67:466–475

    Article  CAS  PubMed  Google Scholar 

  • Arunogiri S, Foulds JA, McKetin R, Lubman DI (2018) A systematic review of risk factors for methamphetamine-associated psychosis. Aust N Z J Psychiatry 52:514–529

    Article  PubMed  Google Scholar 

  • Auron A, Brophy PD (2012) Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 27:207–222

    Article  PubMed  Google Scholar 

  • Baradhi KM, Pathireddy S, Bose S, Aeddula NR (2019) Methamphetamine (N-methylamphetamine)-induced renal disease: underevaluated cause of end-stage renal disease (ESRD). BMJ Case Rep 12

  • Batshaw ML (1984) Hyperammonemia Current Problems in Pediatrics 14:6–69

    Article  Google Scholar 

  • Belanger-Quintana A, Martínez-Pardo M, García MJ, Wermuth B, Torres J, Pallares E, Ugarte M (2003) Hyperammonaemia as a cause of psychosis in an adolescent. Eur J Pediatr 162:773–775

    Article  PubMed  Google Scholar 

  • Bernal W, Jalan R, Quaglia A, Simpson K, Wendon J, Burroughs A (2015) Acute-on-chronic liver failure. The Lancet 386:1576–1587

    Article  Google Scholar 

  • Bigot A, Brunault P, Lavigne C, Feillet F, Odent S, Kaphan E, Thauvin C, Leguy V, Broué P, Tchan MC (2017) Psychiatric adult-onset of urea cycle disorders: a case-series. Molecular Genetics and Metabolism Reports 12:103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaker AL, Northrop NA, Yamamoto BK (2016) Peripheral influences of methamphetamine neurotoxicity. Neuropathology of Drug Addictions and Substance Misuse. Elsevier, pp. 309–319

  • Bloom GR, Suhail F, Hopkins-Price P, Sood A (2008) Acute anhydrous ammonia injury from accidents during illicit methamphetamine production. Burns 34:713–718

    Article  PubMed  Google Scholar 

  • Bonnot O, Klünemann HH, Sedel F, Tordjman S, Cohen D, Walterfang M (2014) Diagnostic and treatment implications of psychosis secondary to treatable metabolic disorders in adults: a systematic review. Orphanet J Rare Dis 9:1–14

    Article  Google Scholar 

  • Brown JWL, Dunne JW, Fatovic DM, Lee J, Lawn ND (2011) Amphetamine-associated seizures: Clinical features and prognosis. Epilepsia 52:401–404

    PubMed  Google Scholar 

  • Bujarski S, Roche DJ, Lunny K, Moallem NR, Courtney KE, Allen V, Hartwell E, Leventhal A, Rohrbaugh T, Ray LA (2014) The relationship between methamphetamine and alcohol use in a community sample of methamphetamine users. Drug Alcohol Depend 142:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagnon L, Braissant O (2007) Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res Rev 56:183–197

    Article  CAS  PubMed  Google Scholar 

  • Cajanding RJM (2019) MDMA-Associated Liver Toxicity: Pathophysiology, Management, and Current State of Knowledge. AACN Adv Crit Care 30:232–248

    Article  PubMed  Google Scholar 

  • Cook RR, Fulcher JA, Tobin NH, Li F, Lee DJ, Woodward C, Javanbakht M, Brookmeyer R, Shoptaw S, Bolan R (2019) Alterations to the gastrointestinal microbiome associated with methamphetamine use among young men who have sex with men. Sci Rep 9:1–11

    Article  Google Scholar 

  • Cooper AJL, Lai JCK, Gelbard AS (1989) Ammonia in liver and extrahepatic tissues: an overview of metabolism and toxicity in mammals. In: Butterworth RF, Layrargues GP (eds.) Hepatic encephalopathy experimental biology and medicine. Humana Press.

  • Cossack ZT, Prasad AS (1987) Hyperammonemia in zinc deficiency: activities of urea cycle related enzymes. Nutr Res 7:1161–1167

    Article  CAS  Google Scholar 

  • Cruickshank CC, Dyer KR (2009) A review of the clinical pharmacology of methamphetamine. Addiction 104:1085–1099

    Article  PubMed  Google Scholar 

  • Daraei B, Sahraei E, Aghazadeh E (2019) Investigation of methamphetamine as a stimulant with side effects and methods of synthesis and impurities in any way. Modares Journal of Biotechnology 10:663–669

    Google Scholar 

  • Dasarathy S, Mookerjee RP, Rackayova V, Thrane VR, Vairappan B, Ott P, Rose CF (2017) Ammonia toxicity: from head to toe? Metab Brain Dis 32:529–538

    Article  CAS  PubMed  Google Scholar 

  • Dawson R Jr, Beal MF, Bondy SC, Monte DA, Isom GE (1995) Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol Appl Pharmacol 134:1–17

  • Duan Y, Wu X, Liang S, Jin F (2015) Elevated blood ammonia level is a potential biological risk factor of behavioral disorders in prisoners. Behavioural neurology 2015

  • Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356:2282–2292

    Article  CAS  PubMed  Google Scholar 

  • Enns GM, O’Brien WE, Kobayashi K, Shinzawa H, Pellegrino JE (2005) Postpartum “psychosis” in mild argininosuccinate synthetase deficiency. Obstet Gynecol 105:1244–1246

    Article  PubMed  Google Scholar 

  • Forouzan S, Hoffman KL, Kosten TA (2020) Methamphetamine exposure and its cessation alter gut microbiota and induce depressive-like behavioral effects on rats. Psychopharmacology: 1–12

  • Garcia-Ayllon MS, Cauli O, Silveyra MX, Rodrigo R, Candela A, Compan A, Jover R, Perez-Mateo M, Martinez S, Felipo V, Saez-Valero J (2008) Brain cholinergic impairment in liver failure. Brain 131:2946–2956

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghadiri A, Etemad L, Moshiri M, Moallem SA, Jafarian AH, Hadizadeh F, Seifi M (2017) Exploring the effect of intravenous lipid emulsion in acute methamphetamine toxicity. Iran J Basic Med Sci 20:138–144

    PubMed  PubMed Central  Google Scholar 

  • Godrati S, Pezeshgi A, Valizadeh R, Kellner SJ, Radfar SR (2020) Acute and delayed nephropathy due to methamphetamine abuse. Journal of Nephropathology 9

  • Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, Carlo G, Bevins RA (2012) Methamphetamine-associated psychosis. J Neuroimmune Pharmacol 7:113–139

    Article  PubMed  Google Scholar 

  • Gray SD, Fatovich DM, McCoubrie DL, Daly FF (2007) Amphetamine-related presentations to an inner-city tertiary emergency department: a prospective evaluation. Med J Aust 186:336–339

    Article  PubMed  Google Scholar 

  • Gupta A, Dhiman RK, Kumari S, Rana S, Agarwal R, Duseja A, Chawla Y (2010) Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J Hepatol 53:849–855

    Article  PubMed  Google Scholar 

  • Gurel A (2016) Multisystem toxicity after methamphetamine use. Clinical Case Reports 4:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadizade Asar S, Hosseini-Sharifabad M, Yadegari M (2018) Effects of methamphetamine toxicity on the nervous system. The Neuroscience Journal of Shefaye Khatam 6:91–99

    Article  Google Scholar 

  • Halpin LE, Gunning III WT, Yamamoto BK (2013) Methamphetamine causes acute hyperthermia‐dependent liver damage. Pharmacology research & perspectives 1

  • Halpin LE, Northrop NA, Yamamoto BK (2014) Ammonia mediates methamphetamine-induced increases in glutamate and excitotoxicity. Neuropsychopharmacology 39:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Halpin LE, Yamamoto BK (2012) Peripheral ammonia as a mediator of methamphetamine neurotoxicity. J Neurosci 32:13155–13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KH (2011) Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism. Electrolyte Blood Press 9:45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson GR, Jensen M, Johnson M, White HS (1999) Distinct features of seizures induced by cocaine and amphetamine analogs. Eur J Pharmacol 377:167–173

    Article  CAS  PubMed  Google Scholar 

  • Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H (2018) Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari R, Jamshidzadeh A, Niknahad H, Mardani E, Ommati MM, Azarpira N, Khodaei F, Zarei A, Ayarzadeh M, Mousavi S (2016) Effect of taurine on chronic and acute liver injury: Focus on blood and brain ammonia. Toxicol Rep 3:870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari R, Jamshidzadeh A, Ommati MM, Rashidi E, Khodaei F, Sadeghi A, Hosseini A, Niknahad H (2019) Ammonia-induced mitochondrial impairment is intensified by manganese co-exposure: relevance to the management of subclinical hepatic encephalopathy and cirrhosis-associated brain injury. J Clin Exp Hepatol 5:109–117

    Article  Google Scholar 

  • Heinzerling KG, Swanson A-N, Kim S, Cederblom L, Moe A, Ling W, Shoptaw S (2010) Randomized, double-blind, placebo-controlled trial of modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend 109:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiguchi T, Hori S, Shinozawa Y, Fujishima S, Kimura H, Yokoyama M, Sasaki J, Takatsuki S, Suzuki M, Yamazaki M (1999) A case of traumatic shock complicated by methamphetamine intoxication. Intensive Care Med 25:758–760

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi T, Hori S, Shinozawa Y, Fujishima S, Kimura H, Yokoyama M, Sasaki J, Takatsuki S, Suzuki M, Yamazaki M, Aikawa N (1999) A case of traumatic shock complicated by methamphetamine intoxication. Intensive Care Med 25:758–760

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JH, Stein DJ, Howells FM (2014) The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung TY, Chen CC, Wang TL, Su CF, Wang RF (2011) Transient hyperammonemia in seizures: a prospective study. Epilepsia 52:2043–2049

    Article  PubMed  Google Scholar 

  • Ilchenko LY, Nikitin I (2011) HYPERAMMONEMIA IN PATIENTS AT PRE-CIRRHOTIC STAGE: CLINICAL REALITY? The Russian Archives of Internal Medicine• № 3• 2018: 186

  • Jamshidzadeh A, Heidari R, Abasvali M, Zarei M, Ommati MM, Abdoli N, Khodaei F, Yeganeh Y, Jafari F, Zarei A (2017a) Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother 86:514–520

    Article  CAS  PubMed  Google Scholar 

  • Jamshidzadeh A, Heidari R, Latifpour Z, Ommati MM, Abdoli N, Mousavi S, Azarpira N, Zarei A, Zarei M, Asadi B (2017) Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin Res Hepatol Gastroenterol 41:424–434

    Article  CAS  PubMed  Google Scholar 

  • Jamshidzadeh A, Niknahad H, Heidari R, Zarei M, Ommati MM, Khodaei F (2017) Carnosine protects brain mitochondria under hyperammonemic conditions: relevance to hepatic encephalopathy treatment. PharmaNutrition 5:58–63

    Article  Google Scholar 

  • Jones ESW, Rayner BL (2015) Hypertension, end-stage renal disease and mesangiocapillary glomerulonephritis in methamphetamine users. S Afr Med J 105:199–201

    Article  CAS  PubMed  Google Scholar 

  • Juneau JE, McGuire BM (2012) Hepatic Encephalopathy. Miscellanea on encephalopathies: a second look: 121

  • Kelly CA, Lawrence DS, Murray GM, Uy OM (2015) Methamphetamine synthesis inhibition: dissolving metal reductions. Johns Hopkins Univ Applied Physics Lab: 1–10

  • Kobeissy F, Mouhieddine TH, Nokkari A, Itani M, Mouhieddine M, Zhang Z, Zhu R, Gold MS, Wang KK, Mechref Y (2014) Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. Translational Proteomics 3:38–52

    Article  CAS  Google Scholar 

  • Kono J, Miyata H, Ushijima S, Yanagita T, Miyasato K, Ikawa G, Hukui K (2001) Nicotine, alcohol, methamphetamine, and inhalant dependence: a comparison of clinical features with the use of a new clinical evaluation form. Alcohol 24:99–106

    Article  CAS  PubMed  Google Scholar 

  • Kwon C, Zaritsky A, Dharnidharka VR (2003) Transient proximal tubular renal injury following Ecstasy ingestion. Pediatr Nephrol 18:820–822

    Article  PubMed  Google Scholar 

  • Lama M, Shannon S, Davin Q (2016) Methamphetamine intoxication encephalopathy associated with hyperammonemia. Psychosomatics 57:325-329

  • Lan KC, Lin YF, Yu FC, Lin CS, Chu P (1998) Clinical manifestations and prognostic features of acute methamphetamine intoxication. J Formos Med Assoc 97:528–533

    CAS  PubMed  Google Scholar 

  • Leidi A, Pisaturo M, Fumeaux T (2019) Malnutrition-related hyperammonemic encephalopathy presenting with burst suppression: a case report. J Med Case Rep 13:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K-T, Lee C-W, Yang S-C, Yeh I-J, Lin T-J, Su C-S (2010) Postictal transient hyperammonemia as an indicator of seizure disorder. Eur Neurol 64:46–50

    Article  PubMed  Google Scholar 

  • McDonnell-Dowling K, Kelly JP (2017) The role of oxidative stress in methamphetamine-induced toxicity and sources of variation in the design of animal studies. Curr Neuropharmacol 15:300–314

  • McKetin R, Kaye SS, Clemens KJ, Hermens DF (2013) Methamphetamine addiction.

  • McKetin R, McLaren J, Lubman DI, Hides L (2006) The prevalence of psychotic symptoms among methamphetamine users. Addiction 101:1473–1478

    Article  PubMed  Google Scholar 

  • Mehta S, Tayabali S, Lachmann R (2018) Valproate-induced hyperammonemia-uncovering an underlying inherited metabolic disorder: a case report. J Med Case Reports 12:1–3

    Article  Google Scholar 

  • Mohiuddin SS, Khattar D (2022) Biochemistry, Ammonia. StatPearls. Treasure Island (FL)

  • Moshiri M, Ataee Z, Rahimi P, Ansari E, Etemad L (2019) Successful medical management of methamphetamine induced ileus: a rare case report and literature review. Bulletin of Emergency & Trauma 7:320

    Article  Google Scholar 

  • Moshiri M, Hosseiniyan SM, Moallem SA, Hadizadeh F, Jafarian AH, Ghadiri A, Hoseini T, Seifi M (2018) The effects of vitamin B12 on the brain damages caused by methamphetamine in mice. Iran J Basic Med Sci 21:434

    PubMed  PubMed Central  Google Scholar 

  • Moshiri M, Rahimi P, Etemad L (2020) Hunting meth mites by a cigarette dire: a case study. IJMTFM 10:25478

    Article  Google Scholar 

  • Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH (2004) Role of tumor necrosis factor-α in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 24:2212–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Yamane K, Shinohara K, Doi K, Inokuchi R, Hiruma T, Nakajima S, Noiri E, Yahagi N (2013) Hyperammonemia in idiopathic epileptic seizure. The American Journal of Emergency Medicine 31: 1486–1489

  • Niknahad H, Jamshidzadeh A, Heidari R, Zarei M, Ommati MM (2017) Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clinical and Experimental Hepatology 3:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordahl TE, Salo R, Leamon M (2003) Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci 15:317–325

    Article  CAS  PubMed  Google Scholar 

  • Northrop NA, Halpin LE, Yamamoto BK (2016) Peripheral ammonia and blood brain barrier structure and function after methamphetamine. Neuropharmacology 107:18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northrop NA, Yamamoto BK (2015) Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R (2021) N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress 24:213–228

    Article  CAS  PubMed  Google Scholar 

  • Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, Abdoli N (2017) N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PharmaNutrition 5:141–147

    Article  Google Scholar 

  • Ozanne B, Nelson J, Cousineau J, Lambert M, Phan V, Mitchell G, Alvarez F, Ducruet T, Jouvet P (2012) Threshold for toxicity from hyperammonemia in critically ill children. J Hepatol 56:123–128

    Article  CAS  PubMed  Google Scholar 

  • Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 129:167–179

    Article  CAS  PubMed  Google Scholar 

  • Pelsue B, G.Rogg J(2017a) A case of status-epilepticus-associated transient hyperammonemia in the emergency department. Case reports in emergency medicine 2017:1–2

  • Pelsue B, Rogg JG (2017) A case of status-epilepticus-associated transient hyperammonemia in the emergency department. Case Reports in Emergency Medicine 2017:9436095

    Article  PubMed  PubMed Central  Google Scholar 

  • Petit A, Karila L, Chalmin F, Lejoyeux M (2012) Methamphetamine addiction: a review of the literature. Journal of Addiction Research & Therapy S 1:1–6

    Google Scholar 

  • Pourafshar N, Pourafshar S, Soleimani M (2018) Urine ammonium, metabolic acidosis and progression of chronic kidney disease. Nephron 138:222–228

    Article  CAS  PubMed  Google Scholar 

  • Qiao L (2007) The effect of methamphetamine on seizure threshold and epileptogenesis. University of Utah, Neuroscience Program

    Google Scholar 

  • Rabbani P, Prasad AS (1978) Plasma ammonia and liver ornithine transcarbamoylase activity in zinc-deficient rats. American Journal of Physiology-Endocrinology and Metabolism 235:E203

    Article  CAS  Google Scholar 

  • Ratnakumari L, Qureshi IA, Maysinger D, Butterworth RF (1995) Developmental deficiency of the cholinergic system in congenitally hyperammonemic spf mice: effect of acetyl-L-carnitine. J Pharmacol Exp Ther 274:437–443

    CAS  PubMed  Google Scholar 

  • Riggio O, Merli M, Capocaccia L, Caschera M, Zullo A, Pinto G, Gaudio E, Franchitto A, Spagnoli R, D’aquilino E (1992) Zinc supplementation reduces blood ammonia and increases liver ornithine transcarbamylase activity in experimental cirrhosis. Hepatology 16:785–789

    Article  CAS  PubMed  Google Scholar 

  • Roohbakhsh A, Moshiri M, Salehi Kakhki A, Iranshahy M, Amin F, Etemad L (2021) Thymoquinone abrogates methamphetamine-induced striatal neurotoxicity and hyperlocomotor activity in mice. Res Pharm Sci 16:391–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed M, Ghadiri A, Hadizadeh F, Attaranzadeh A, Alavi MS, Etemad L (2018) Cinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex. Iran J Basic Med Sci 21:1316

    PubMed  PubMed Central  Google Scholar 

  • Savy N, Brossier D, Brunel-Guitton C, Ducharme-Crevier L, Du Pont-Thibodeau G, Jouvet P (2018) Acute pediatric hyperammonemia: current diagnosis and management strategies. Hepatic Medicine: Evidence and Research 10:105

    Article  Google Scholar 

  • Schenker S, McCandless DW, Brophy E, Lewis MS (1967) Studies on the intracerebral toxicity of ammonia. J Clin Investig 46:838–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz V, Lowenstein J (1978) The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J Biol Chem 253:1938–1943

    Article  CAS  PubMed  Google Scholar 

  • Seeman JI, Carchman RA (2008) The possible role of ammonia toxicity on the exposure, deposition, retention, and the bioavailability of nicotine during smoking. Food Chem Toxicol 46:1863–1881

    Article  CAS  PubMed  Google Scholar 

  • Shima N, Miyawaki I, Bando K, Horie H, Zaitsu K, Katagi M, Bamba T, Tsuchihashi H, Fukusaki E (2011) Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 287:29–37

    Article  CAS  PubMed  Google Scholar 

  • Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39:135–153

    Article  CAS  PubMed  Google Scholar 

  • Taneja V, Jasuja H (2019) Severe hyperammonemia from intense skeletal muscle activity: a rare case report and literature review. Medicine 98

  • Tokunaga I, Kubo S-i, Ishigami A, Gotohda T, Kitamura O (2006) Changes in renal function and oxidative damage in methamphetamine-treated rat. Leg Med 8:16–21

    Article  CAS  Google Scholar 

  • van Son J, Rietbroek R, Vaz F, Hollak C (2019) Bizarre behavior and decreased level of consciousness in an adult patient. Neth J Med 77:25

    PubMed  Google Scholar 

  • Vanga RR, Bal B, Olden KW (2013) Adderall induced acute liver injury: a rare case and review of the literature. Case Rep Gastrointest Med 2013:902892

    PubMed  PubMed Central  Google Scholar 

  • Vearrier D, Greenberg MI, Miller SN, Okaneku JT, Haggerty DA (2012) Methamphetamine: history, pathophysiology, adverse health effects, current trends, and hazards associated with the clandestine manufacture of methamphetamine. Dis Mon 58:38–89

    Article  PubMed  Google Scholar 

  • Wang Q, Wei L-W, Xiao H-Q, Xue Y, Du S-H, Liu Y-G, Xie X-L (2017) Methamphetamine induces hepatotoxicity via inhibiting cell division, arresting cell cycle and activating apoptosis: in vivo and in vitro studies. Food Chem Toxicol 105:61–72

    Article  CAS  PubMed  Google Scholar 

  • Weinberger AH, Sofuoglu M (2009) The impact of cigarette smoking on stimulant addiction. Am J Drug Alcohol Abuse 35:12–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y-B, Zhang L, Li W-t, Yang Y, Zhao J-m (2016) Artesunate restores spatial learning of rats with hepatic encephalopathy by inhibiting ammonia-induced oxidative damage in neurons and dysfunction of glutamate signaling in astroglial cells. Biomed Pharmacother 84:972–978

    Article  CAS  PubMed  Google Scholar 

  • Xie X-L, He J-T, Wang Z-T, Xiao H-Q, Zhou W-T, Du S-H, Xue Y, Wang Q (2018) Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Toxicol Lett 289:107–113

    Article  CAS  PubMed  Google Scholar 

  • Yanagawa Y, Nishi K, Sakamoto T (2008) Hyperammonemia is associated with generalized convulsion. Intern Med 47:21–23

    Article  PubMed  Google Scholar 

  • Yu S, Zhu L, Shen Q, Bai X, Di X (2015) Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behavioural neurology 2015

  • Zabida OS (2018) The effect of methamphetamine on the blood-testis barrier. University of the Western CAPE, Magister Scientiae, Department of Medical BioSciences

    Google Scholar 

  • Zarrabi H, Khalkhali M, Hamidi A, Ahmadi R, Zavarmousavi M (2016a) Clinical features, course and treatment of methamphetamine-induced psychosis in psychiatric inpatients. BMC Psychiatry 16:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarrabi H, Khalkhali M, Hamidi A, Ahmadi R, Zavarmousavi M (2016) Clinical features, course and treatment of methamphetamine-induced psychosis in psychiatric inpatients. BMC Psychiatry 16:1–8

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in writing the review article. EL, TM and MM conceived research. EL and JFM Performed the literature search. OMM and JFM wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Leila Etemad.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharbad, M.J., Moshiri, M., Ommati, M.M. et al. A review of basic to clinical studies of the association between hyperammonemia, methamphetamine. Naunyn-Schmiedeberg's Arch Pharmacol 395, 921–931 (2022). https://doi.org/10.1007/s00210-022-02248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02248-w

Keywords

Navigation