Skip to main content

Advertisement

Log in

Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Neuroinflammation (NIF) plays an essential role in the pathology of neurological disorders like Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and epilepsy. Despite progress in the drug discovery and development of new drugs, drug delivery to the central nervous system (CNS) still represents the challenge due to the presence of the blood–brain barrier (BBB). Targeting NIF may require an adequate amount of drug to cross the BBB. Recently, the intranasal (IN) drug administration has attracted increasing attention as a reliable method to cross the BBB and treat neurological disorders. On the other hand, using optimized nanoparticles may improve the IN delivery limitations, increase the mucoadhesive properties, and prevent drug degradation. NPs can carry and deliver drugs to the CNS by bypassing the BBB. In this review, we described briefly the NIF as a pathologic feature of CNS diseases. The potential treatment possibilities with IN transfer of NP-loaded drugs will enhance the establishment of more efficient nanoformulations and delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449

    CAS  PubMed  Google Scholar 

  • Adamczyk-Grochala J, Lewinska A (2020) Nano-based theranostic tools for the detection and elimination of senescent cells. Cells 9. https://doi.org/10.3390/cells9122659

  • Adams D, Joyce G, Richardson V, Ryman BE, Wiśniewski H (1977) Liposome toxicity in the mouse central nervous system. J Neurol Sci 31:173–179

    CAS  PubMed  Google Scholar 

  • Ahmad E et al (2017) Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale 9:1174–1183. https://doi.org/10.1039/c6nr07581a

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:1–9

    Google Scholar 

  • Alexander A et al (2019) Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomed 14:5895

    CAS  Google Scholar 

  • Amor S, Puentes F, Baker D, Van Der Valk P (2010) Inflammation in Neurodegenerative Diseases. Immunology 129:154–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio-Blanco J, Romero IA, Male DK, Slowing K, García-García L, Torres-Suárez AI (2019) Cannabidiol enhances the passage of lipid nanocapsules across the blood–brain barrier both in vitro and in vivo. Mol Pharm 16:1999–2010

    CAS  PubMed  Google Scholar 

  • Barar J, Rafi MA, Pourseif MM, Omidi Y (2016) Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 6:225–248. https://doi.org/10.15171/bi.2016.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia L et al (2018) Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin Drug Deliv 15:369–378

    CAS  PubMed  Google Scholar 

  • Bhushan B, Bhushan B, Baumann (2007) Springer handbook of nanotechnology vol 2. Springer

  • Bony BA, Kievit FM (2019) A role for nanoparticles in treating traumatic brain injury. Pharmaceutics 11:473

    CAS  Google Scholar 

  • Bourganis V, Kammona O, Alexopoulos A, Kiparissides C (2018a) Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 128:337–362. https://doi.org/10.1016/j.ejpb.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  • Bourganis V, Kammona O, Alexopoulos A, Kiparissides CJEJOP, biopharmaceutics (2018) Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 128:337–362

    CAS  PubMed  Google Scholar 

  • Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975

    CAS  Google Scholar 

  • Bustamante-Marin XM, Ostrowski LE (2017) Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9:a028241. https://doi.org/10.1101/cshperspect.a028241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahalane C, Bonezzi J, Shelestak J, Clements R, Boika A, Yun YH, Shriver LP (2020) Targeted delivery of anti-inflammatory and imaging agents to microglial cells with polymeric nanoparticles. Mol Pharm 17:1816–1826

    CAS  PubMed  Google Scholar 

  • Caramella C, Ferrari F, Bonferoni M, Rossi S, Sandri G (2010) Chitosan and its derivatives as drug penetration enhancers. J Drug Deliv Sci Technol 20:5–13

    CAS  Google Scholar 

  • Casals E, Gusta MF, Piella J, Casals G, Jiménez W, Puntes V (2017) Intrinsic and extrinsic properties affecting innate immune responses to nanoparticles: the case of cerium oxide. Front Immunol 8:970. https://doi.org/10.3389/fimmu.2017.00970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charabati M, Rabanel JM, Ramassamy C, Prat A (2020) Overcoming the brain barriers: from immune cells to nanoparticles. Trends Pharmacol Sci 41:42–54. https://doi.org/10.1016/j.tips.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi M, Kumar M, Pathak K (2011) A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res 2:215–222. https://doi.org/10.4103/2231-4040.90876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yang GZX, Getachew H, Acosta C, Sánchez CS, Konofagou EE (2016) Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci Rep 6:1–8

    Google Scholar 

  • Chowdhury HH, Cerqueira SR, Sousa N, Oliveira JM, Reis RL, Zorec R (2018) The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification. Biomater Sci 6:388–397. https://doi.org/10.1039/c7bm00886d

    Article  CAS  PubMed  Google Scholar 

  • Chung EP, Cotter JD, Prakapenka AV, Cook RL, DiPerna DM, Sirianni RW (2020) Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12020093

  • Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 9:174–191

  • Costa C, Moreira J, Amaral M, Lobo JS, Silva ACJJOCR (2019) Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release 295:187–200

    CAS  PubMed  Google Scholar 

  • Costa CP, Moreira JN, Sousa Lobo JM, Silva AC (2021) Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: a current overview of in vivo studies. Acta Pharmaceutica Sinica B 11:925–940. https://doi.org/10.1016/j.apsb.2021.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai H et al (2010) Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine 5:1317–1329

    CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    CAS  PubMed  Google Scholar 

  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 44:381–391

    CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3:133–149. https://doi.org/10.2147/ijn.s596

    Article  PubMed  PubMed Central  Google Scholar 

  • Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40:e1800917. https://doi.org/10.1002/marc.201800917

    Article  CAS  PubMed  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH (2009) Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. J Pharmacol Exp Ther 328:312–320

    CAS  PubMed  Google Scholar 

  • Durand M et al (2001) Preliminary study of the deposition of aerosol in the maxillary sinuses using a plastinated model. J Aerosol Med 14:83–93

    CAS  PubMed  Google Scholar 

  • Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 49:347–380. https://doi.org/10.1007/s40005-019-00439-x

    Article  CAS  Google Scholar 

  • Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104:3544–3556. https://doi.org/10.1002/jps.24557

    Article  CAS  PubMed  Google Scholar 

  • English C, Aloi JJ (2015) New FDA-approved disease-modifying therapies for multiple sclerosis. Clin Ther 37:691–715

    CAS  PubMed  Google Scholar 

  • Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S (2018) Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–170. https://doi.org/10.1016/j.brainresbull.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  • Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M (2011) Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 6:363–371. https://doi.org/10.2147/ijn.S15881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W (2018) Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev™ Therapeut Drug Carrier Syst 35

  • Farahavar G, Abolmaali SS, Gholijani N, Nejatollahi F (2019) Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomater Sci 7:4000–4016. https://doi.org/10.1039/c9bm00931k

    Article  CAS  PubMed  Google Scholar 

  • Field P, Li Y, Raisman GJJON (2003) Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317–324

    PubMed  Google Scholar 

  • Froelich A, Osmałek T, Jadach B, Puri V, Michniak-Kohn B (2021) Microemulsion-based media in nose-to-brain drug delivery. Pharmaceutics 13:201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furubayashi T et al (2007) Kinetic model to predict the absorption of nasally applied drugs from in vitro transcellular permeability of drugs. Biol Pharm Bull 30:1007–1010. https://doi.org/10.1248/bpb.30.1007

    Article  CAS  PubMed  Google Scholar 

  • Gänger S, Schindowski K (2018) Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 10:116. https://doi.org/10.3390/pharmaceutics10030116

    Article  CAS  PubMed Central  Google Scholar 

  • Gao M, Shen X, Mao S (2020) Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays. J Pharm Investig 50:251–259. https://doi.org/10.1007/s40005-020-00482-z

    Article  CAS  Google Scholar 

  • Gendelman HE et al (2015) Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine: Nanotechnology. Biol Med 11:751–767

    CAS  Google Scholar 

  • Ghadiri M, Young PM, Traini DJP (2019) Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 11(3):113

    CAS  PubMed Central  Google Scholar 

  • Gilhus NE, Deuschl G (2019) Neuroinflammation—a common thread in neurological disorders. Nat Rev Neurol 15:429–430

    PubMed  Google Scholar 

  • Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. The Company of Biologists Ltd

  • Gizurarson S (1993) The relevance of nasal physiology to the design of drug absorption studies. Adv Drug Deliv Rev 11:329–347. https://doi.org/10.1016/0169-409X(93)90015-V

    Article  CAS  Google Scholar 

  • González LF, Acuña E, Arellano G, Morales P, Sotomayor P, Oyarzun-Ampuero F, Naves R (2021) Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: a promising simple, effective, non-invasive, and low-cost therapy. J Control Release 331:443–459. https://doi.org/10.1016/j.jconrel.2020.11.019

    Article  CAS  PubMed  Google Scholar 

  • Graff CL, Pollack GM (2003) P-Glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res 20:1225–1230

    CAS  PubMed  Google Scholar 

  • Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Cancer nanotechnology. Springer, pp 25–37

  • Guo J, Jiang X, Gui S (2016) RNA interference-based nanosystems for inflammatory bowel disease therapy. Int J Nanomed 11:5287

    CAS  Google Scholar 

  • Gutiérrez J, González C, Maestro A, Solè I, Pey C, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    Google Scholar 

  • Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han H et al (2019) Monocytes as carriers of magnetic nanoparticles for tracking inflammation in the epileptic rat brain. Curr Drug Deliv 16:637–644. https://doi.org/10.2174/1567201816666190619122456

    Article  CAS  PubMed  Google Scholar 

  • Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E, Hernandez RM (2018) Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol 55:145–155. https://doi.org/10.1007/s12035-017-0728-7

    Article  CAS  PubMed  Google Scholar 

  • Hoyos-Ceballos GP et al (2020) PLGA-PEG-ANG-2 nanoparticles for blood-brain barrier crossing: proof-of-concept study. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12010072

  • Huart C, Rombaux P, Hummel TJJOB, biomembranes, (2019) Neural plasticity in developing and adult olfactory pathways–focus on the human olfactory bulb. J Bioenerg Biomembr 51:77–87

    CAS  PubMed  Google Scholar 

  • Ibrahim Bekraki A (2020) Chapter 7 - Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment. In: Kesharwani P (ed) Nanotechnology based approaches for tuberculosis treatment. Academic Press, pp 107–122. https://doi.org/10.1016/B978-0-12-819811-7.00007-2

  • Islam SU, Shehzad A, Ahmed MB, Lee YS (2020) Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules 25:1929

    CAS  PubMed Central  Google Scholar 

  • Jeong SJ et al (2017a) Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiol Dis 108:73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson NJ, Hanson LR, Frey WHJMP (2010) Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 7:884–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juthani R et al (2020) Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clin Cancer Res 26:147–158. https://doi.org/10.1158/1078-0432.Ccr-19-1834

    Article  CAS  PubMed  Google Scholar 

  • Karasulu HY (2008) Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv 5:119–135. https://doi.org/10.1517/17425247.5.1.119

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R (2020) Neuroinflammation mechanisms and phytotherapeutic intervention: a systematic review. ACS Chem Neurosci 11:3707–3731

    CAS  PubMed  Google Scholar 

  • Keller L-A, Merkel O, Popp A (2021) Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. https://doi.org/10.1007/s13346-020-00891-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller L-A, Merkel O, Popp AJDD, Research T (2021b) Intranasal drug delivery: opportunities and toxicologic challenges during drug development.1–23

  • Khallaf RA, Aboud HM, Sayed OM (2020) Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res 30:163–173. https://doi.org/10.1080/08982104.2019.1610435

    Article  CAS  PubMed  Google Scholar 

  • Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K (2019) Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci Rep 9:8278. https://doi.org/10.1038/s41598-019-44569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Shin K, Kwon SG, Hyeon T (2018) Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater 30:e1802309. https://doi.org/10.1002/adma.201802309

    Article  CAS  PubMed  Google Scholar 

  • Knight DA, Holgate STJR (2003) The Airway Epithelium: Structural and Functional Properties in Health and Disease. Respirology 8:432–446

    PubMed  Google Scholar 

  • Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25:8240–8249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlovskaya L, Abou-Kaoud M, Stepensky DJJOCR (2014) Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 189:133–140

    CAS  PubMed  Google Scholar 

  • Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14

    CAS  PubMed  Google Scholar 

  • Kulkarni SA, Feng SS (2011) Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine (Lond) 6:377–394. https://doi.org/10.2217/nnm.10.131

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AN, Jain SKJDd (2016a) Nasal-nanotechnology: revolution for efficient therapeutics delivery. 23:671–683

  • Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U (2017) Intranasal drug delivery: a non-invasive approach for the better delivery of neurotherapeutics. Pharm Nanotechnol 5:203–214. https://doi.org/10.2174/2211738505666170515113936

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K (2008a) Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 358:285–291. https://doi.org/10.1016/j.ijpharm.2008.03.029

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Misra A, Mishra AK, Mishra P, Pathak K (2008b) Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target 16:806–814. https://doi.org/10.1080/10611860802476504

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Sharma P, Maheshwari R, Tekade M, Shrivastava SK, Tekade RK (2018) Chapter 15 - Beyond the blood–brain barrier: facing new challenges and prospects of nanotechnology-mediated targeted delivery to the brain. In: Kesharwani P, Gupta U (eds) Nanotechnology-based targeted drug delivery systems for brain tumors. Academic Press, pp 397–437. https://doi.org/10.1016/B978-0-12-812218-1.00015-4

  • Kumar NN, Gautam M, Lochhead JJ, Wolak DJ, Ithapu V, Singh V, Thorne RGJSR (2016b) Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery. 6:1-14

  • Kumar R, Aadil KR, Ranjan S, Kumar VB (2020) Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 57:101617

  • Lavoie J et al (2017) The Olfactory Neural Epithelium as a Tool in Neuroscience. Trends Mol Med 23:100–103

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Hu X, Liu Y, Bao Y, An L (2009) Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. Neuropharmacology 56:580–589. https://doi.org/10.1016/j.neuropharm.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  • Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628

    CAS  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG (2014) Intranasal drug delivery to the brain. In: Drug delivery to the brain. Springer, pp 401–431

  • Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO (2009) The role of neuroimmunomodulation in Alzheimer’s disease. Ann N Y Acad Sci 1153:240–246

    CAS  PubMed  Google Scholar 

  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139

    PubMed  PubMed Central  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    CAS  PubMed  Google Scholar 

  • Marttin E, Schipper NG, Verhoef JC, Merkus FWJA (1998) Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 29:13–38

    CAS  PubMed  Google Scholar 

  • Masserini M (2013) Nanoparticles for brain drug delivery. Int Scholar Res Notices 2013

  • Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins. Neurobiol Aging 22:885–893

    CAS  PubMed  Google Scholar 

  • Meng Q et al (2018) Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 13:705–718. https://doi.org/10.2147/ijn.S151474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra MK et al (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8:2134–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379:146–157. https://doi.org/10.1016/j.ijpharm.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  • Moeinzadeh S, Jabbari E (2017) Nanoparticles and their applications. In: Springer handbook of nanotechnology. Springer, pp 335–361

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    PubMed  Google Scholar 

  • Musumeci T et al (2018) Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm 133:309–320. https://doi.org/10.1016/j.ejpb.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  • Neha B, Ganesh B, Preeti K (2013) Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharmaceut Life Sci 2:107–132

    Google Scholar 

  • Newman SP, Pitcairn GR, Dalby RN (2004) Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit Rev™ Therapeut Drug Carrier Syst 21

  • Oliveira P, Fortuna A, Alves G, Falcao A (2016) Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Curr Drug Metab 17:628–647

    CAS  PubMed  Google Scholar 

  • Papa S et al (2016) Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75:13–24

    CAS  PubMed  Google Scholar 

  • Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:1–33

    Google Scholar 

  • Peviani M, Palmiero UC, Cecere F, Milazzo R, Moscatelli D, Biffi A (2019) Biodegradable polymeric nanoparticles administered in the cerebrospinal fluid: brain biodistribution, preferential internalization in microglia and implications for cell-selective drug release. Biomaterials 209:25–40

    CAS  PubMed  Google Scholar 

  • Raj R, Wairkar S, Sridhar V, Gaud R (2018) Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 109:27–35. https://doi.org/10.1016/j.ijbiomac.2017.12.056

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    CAS  PubMed  Google Scholar 

  • Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A (2016) Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol 32:77–87

    CAS  Google Scholar 

  • Rinaldi F et al (2019) inPentasomes: an innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J Control Release 294:17–26

    CAS  PubMed  Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919. https://doi.org/10.1007/s11051-011-0275-5

    Article  Google Scholar 

  • Sabir F, Ismail R, Csoka IJD (2020) Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today 25:185–194

    CAS  PubMed  Google Scholar 

  • Saha S et al (2020) Amphetamine decorated cationic lipid nanoparticles cross the blood-brain barrier: therapeutic promise for combating glioblastoma. J Mater Chem B 8:4318–4330. https://doi.org/10.1039/c9tb02700a

    Article  CAS  PubMed  Google Scholar 

  • Schipper NG, Verhoef JC, Merkus FWJPr (1991) The nasal mucociliary clearance: relevance to nasal drug delivery. 8:807-814

  • Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 7:4169–4176. https://doi.org/10.1016/j.actbio.2011.07.025

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj K, Gowthamarajan K, Karri VVSR (2018) Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol 46:2088–2095

    CAS  PubMed  Google Scholar 

  • Selvaraj K, Gowthamarajan K, Karri VVSRJAc, nanomedicine, biotechnology (2018b) Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. 46:2088-2095

  • Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633

    CAS  PubMed  Google Scholar 

  • Shah B, Khunt D, Misra M, Padh H (2016) Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route*. Int J Biol Macromol 89:206–218. https://doi.org/10.1016/j.ijbiomac.2016.04.076

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Peng H, Huang Q, Kong J, Xu H (2015) Quetiapine mitigates the neuroinflammation and oligodendrocyte loss in the brain of C57BL/6 mouse following cuprizone exposure for one week. Eur J Pharmacol 765:249–257. https://doi.org/10.1016/j.ejphar.2015.08.046

    Article  CAS  PubMed  Google Scholar 

  • Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediators Inflamm 2013

  • Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or foe? Mol Neurobiol 54:8071–8089

    CAS  PubMed  Google Scholar 

  • Su Y et al (2020) Intranasal delivery of targeted nanoparticles loaded with mir-132 to brain for the treatment of neurodegenerative diseases. Front Pharmacol 11:1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne R, Pronk G, Padmanabhan V, Frey Ii WJN (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. 127:481-496

  • Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–2070

    CAS  PubMed  Google Scholar 

  • Tiwari A, Mahadik KR, Gabhe SY (2020) Piperine: a comprehensive review of methods of isolation, purification, and biological properties. Med Drug Discov 7:100027. https://doi.org/10.1016/j.medidd.2020.100027

    Article  Google Scholar 

  • Tomalia DA, Nixon LS, Hedstrand DM (2020) The role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties. Biomolecules 10:642

    CAS  PubMed Central  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    CAS  PubMed  Google Scholar 

  • Trotta V et al (2018) Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm 127:250–259. https://doi.org/10.1016/j.ejpb.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  • Tzeng SY, Green JJ (2013) Therapeutic nanomedicine for brain cancer. Ther Deliv 4:687–704

    CAS  PubMed  Google Scholar 

  • Ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291

  • Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW (2020) Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging 10:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, Misra A (2005) Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target 13:317–324. https://doi.org/10.1080/10611860500246217

    Article  CAS  PubMed  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A (2006a) Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci 95:570–580. https://doi.org/10.1002/jps.20480

    Article  CAS  PubMed  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A (2006b) Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech 7:E49-e57. https://doi.org/10.1208/pt070108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang K et al. (2020) Therapeutic nanomaterials for neurological diseases and cancer therapy. J Nanomater 2020

  • Wen Z et al (2011) Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 151:131–138. https://doi.org/10.1016/j.jconrel.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Sam H, Horvát S, Deli MA, Mack AF (2008) Epithelial and endothelial barriers in the olfactory region of the nasal cavity of the rat. Histochem Cell Biol 130:127–140

    CAS  PubMed  Google Scholar 

  • Yadav S, Gandham SK, Panicucci R, Amiji MM (2016) Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine 12:987–1002. https://doi.org/10.1016/j.nano.2015.12.374

    Article  CAS  PubMed  Google Scholar 

  • Yao M et al (2020) Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia. ACS Appl Mater Interfaces 12:37885–37895. https://doi.org/10.1021/acsami.0c10500

    Article  CAS  PubMed  Google Scholar 

  • Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6:585–607. https://doi.org/10.1016/j.nantod.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461:192–202. https://doi.org/10.1016/j.ijpharm.2013.11.049

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Lin Y-A, Kannan S, Kannan RM (2016a) Targeting specific cells in the brain with nanomedicines for CNS therapies. J Control Release 240:212–226

    CAS  PubMed  Google Scholar 

  • Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z (2004) Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm 275:85–96. https://doi.org/10.1016/j.ijpharm.2004.01.039

    Article  CAS  PubMed  Google Scholar 

  • Zhang T-T, Li W, Meng G, Wang P, Liao W (2016b) Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 4:219–229

    CAS  PubMed  Google Scholar 

  • Zielińska A et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FM and ND conceived of the presented idea. FM and ND equally participated in drafting the article. FM participated in revising it critically for important intellectual content. FM and ND gave final approval of the version to be submitted and any revised version.

Corresponding author

Correspondence to Nasrin Dashti.

Ethics declarations

Ethical approval

N/A

Consent to participate

N/A

Consent to publish

N/A

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, F., Dashti, N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn-Schmiedeberg's Arch Pharmacol 395, 133–148 (2022). https://doi.org/10.1007/s00210-021-02196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02196-x

Keywords

Navigation