Skip to main content

Advertisement

Log in

Calcium signaling cascades differentially regulate PGF-induced myometrial contractions in water buffaloes (Bubalus bubalis)

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study unravels the differential involvement of calcium signaling pathway(s) in PGF-induced contractions in myometrium of nonpregnant (NP) and pregnant buffaloes. Compared to the myometrium of pregnant animals, myometrium of NP buffaloes was more sensitive to PGF as manifested by changes in mean integral tension (MIT) and tonicity. In the presence of nifedipine, myometrial contraction to PGF was significantly attenuated in both NP and pregnant uteri; however, mibefradil and NNC 55-0396 produced inhibitory effects only in uterus of pregnant animals, thus suggesting the role of extracellular Ca2+ influx through nifedipine-sensitive L-type Ca2+-channels both in NP and pregnant, but T-type Ca2+ channels seem to play a role only during pregnancy. Entry of extracellular Ca2+ is triggered by enhanced functional involvement of Pyr3-sensitive TRPC3 channels and Rho-kinase pathways as evidenced by a significant rightward shift of the concentration–response curve of PGF in the presence of Pyr3 and Y-27632 in NP myometrium. But significant down-expressions of TRPC3 and Rho-A proteins during pregnancy apparently facilitate uterine quiescence. In the presence of Ca2+-free solution and cyclopiazonic acid (SERCA blocker), feeble contraction to PGF was observed in both NP and pregnant myometrium which suggests minor role of intracellular source of Ca2+ in mediating PGF-induced contractions in these tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anadol E, Kanca H, Yar AS, Helvacioğlu F, Menevşe S, Çalgüner E, Erdoğan D (2014) Prostaglandin F receptor expression in intrauterine tissues of pregnant rats. J Vet Sci 15:125–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Babich LG, Ku CY, Young HW, Huang H, Blackburn MR, Sanborn BM (2004) Expression of capacitative calcium TrpC proteins in rat myometrium during pregnancy. Biol Reprod 70:919–924

    Article  PubMed  CAS  Google Scholar 

  • Barry JS, Anthony RV (2008) The pregnant sheep as a model for human pregnancy. Theriogenology 69:55–67

    Article  PubMed  CAS  Google Scholar 

  • Blanks AM, Zhao ZH, Shmygol A, Bru-Mercier G, Astle S, Thornton S (2007) Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. J Physiol 581:915–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campanile G, Neglia G (2007) Embryonic mortality in buffalo cows. Italian J Anim Sci 6(2):119–129

    Article  Google Scholar 

  • Cao J, Kitazawa T, Takehana K, Taneike T (2006) Endogenous PGF regulates spontaneous contractile activity of uterine strips isolated from non-pregnant pigs. Prostaglandins Other Lipid Mediat 81:93–95

    Article  PubMed  CAS  Google Scholar 

  • Cario-Toumaniantz C, Reillaudoux G, Sauzeau V, Heutte F, Vaillant N, Finet M, Chardin P, Loirand G, Pacaud P (2003) Modulation of RhoA–Rho kinase-mediated Ca2+ sensitization of rabbit myometrium during pregnancy – Role of Rnd3. J Physiol 552:403–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrasco MP, Phaneuf S, Asboth G, Lopez Bernal A (1996) Fluprostenol activates phospholipase C and Ca2+ mobilization in human myometrial cells. J Clin Endocrinol Metab 81:2104–2110

    PubMed  CAS  Google Scholar 

  • Casteels R, Kuriyama H (1965) Membrane potential and ionic content in pregnant and non-pregnant rat myometrium. J Physiol 177:263–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaud MA, Franchi AM, Beron de Astrada M, Gimeno MF (1997) Role of nitric oxide on oxytocin evoked contractions and prostaglandin synthesis in isolated pregnant rat uterus. Prostaglandins Leukot Essent Fat Acids 57:323–329

    Article  CAS  Google Scholar 

  • Choudhury S, Garg SK, Singh TU, Mishra SK (2010) Cellular coupling of potassium channels with β2-adrenoceptors in mediating myometrial relaxation in buffaloes (Bubalus bubalis). J Vet Pharmacol Ther 33:22–27

    Article  PubMed  CAS  Google Scholar 

  • Coleman HA, Hart JD, Tonta MA, Parkington HC (2000) Changes in the mechanisms involved in uterine contractions during pregnancy in guinea-pigs. J Physiol 523:785–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM (2002) Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod 8:946–951

    Article  PubMed  CAS  Google Scholar 

  • FAO. 2012. The state of food and agriculture.

  • Fu X, Liu YJ, Ciray N, Olovsson M, Ulmsten U, Gylfe E (2000) Oxytocin-induced oscillations of cytoplasmic Ca2+ in human myometrial cells. Acta Obstet Gynecol Scand 79:174–179

    PubMed  CAS  Google Scholar 

  • Fujihara H, Walker LA, Gong MC, Lemichez E, Boquet P, Somlyo AV, Somlyo AP (1997) Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B. Mol Biol Cell 8:2437–2247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerwins P, Fredholm BB (1992) ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J Biol Chem 267:16081–11687

    Article  PubMed  CAS  Google Scholar 

  • Gognya A, Mallemb Y, Destrumellea S, Thorinb C, Desfontisb JC, Gognyb M et al (2010) In vitro comparison of myometrial contractility induced by aglepristone-oxytocin and aglepristone-PGF2alpha combinations at different stages of the estrus cycle in the bitch. Theriogenology 74:1531–1538

    Article  CAS  Google Scholar 

  • Goureau O, Tanfin Z, Harbon S (1990) Prostaglandins and muscarinic agonists induce cyclic AMP attenuation by two distinct mechanisms in the pregnant-rat myometrium. Interaction between cyclic AMP and Ca2+ signals. Biochem J 271:667–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houdeau E, Levy A, Mhaouty-Kodja S (2005) Up-regulation of rat myometrial phospholipases C{beta}1 and C{beta}3 correlates with increased term sensitivity to carbachol and oxytocin. J Endocrinol 187:197–204

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC55-0396 [(1S, 2S)- 2-(2-(N-[(3-benzimidazol-2-yl)propyl] - N-methylamino) ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl 2-naphytyl cyclopropane carboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Therap 309:193–199

    Article  CAS  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    Article  PubMed  CAS  Google Scholar 

  • Ireland JJ, Murphee RL, Coulson PB (1980) Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci 63:155–160

    Article  PubMed  CAS  Google Scholar 

  • Janicek F, Franova S, Nosalova G, Visnovsky J (2007) In vitro contractile response of human myometrium to oxytocin, PGF2alpha, bradykinin and ET-1. Bratisl Lek Listy 108:174–178

    PubMed  CAS  Google Scholar 

  • Jung C, Fernández-Dueñas V, Plata C, Garcia-Elias A, Ciruela F, Fernández-Fernández JM, Valverde MA (2018) Functional coupling of GABAA/B receptors and the channel TRPV4 mediates rapid progesterone signaling in the oviduct. Sci Signal 11:543

  • Kalantaridou SN, Makrigiannakis A, Mastorakos G, Chrousos GP (2003) Roles of reproductive corticotropin-releasing hormone. Ann N Y Acad Sci 997:129–135

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Ahn DS, Lee YH (2009) Role of T-type Ca2+ Channels in the spontaneous phasic contraction of pregnant rat uterine smooth muscle. Korean J Physiol Pharmacol 13:241–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leijten PA, Van-Breemen C (1986) The relationship between noradrenaline-induced contraction and 45Ca2+ efflux stimulation in rabbit mesenteric artery. Br J Pharmacol 89:739–747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luckas JJ, Taggart MJ, Wray S (1999) Intracellular calcium stores and agonist-induced contractions in isolated human myometrium. Am J Obstet Gynecol 181:468–476

    Article  PubMed  CAS  Google Scholar 

  • Madsen G, Zakar T, Ku CY, Sanborn BM, Smith R, Mesiano S (2004) Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal. J Clin Endocrinol Metab 89:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Matthew A, Shmygol A, Wray S (2004) Ca2+ entry, efflux and release in smooth muscle. Biol Res 37:617–624

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Hermsmeyer K (1994) Selective inhibition of T-type Ca2+ channels by Ro 40-5967. Circ Res 75:144–148

    Article  PubMed  CAS  Google Scholar 

  • Molnar M, Hertelendy F (1990) Regulation of intracellular free calcium in human myometrial cells by prostaglandin F2 alpha: comparison with oxytocin. J Clin Endocrinol Metab 71:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Molnar M, Hertelendy F (1995) Signal transduction in rat myometrial cells: comparison of the actions of endothelin-1, oxytocin and prostaglandin F2 alpha. Eur J Endocrinol 133:467–474

    Article  PubMed  CAS  Google Scholar 

  • Moosmang S, Haider N, Brüderl B, Welling A, Hofmann F (2006) Antihypertensive effects of the putative T-Type calcium channel antagonist mibefradil are mediated by the L-type calcium channel Ca v1.2. Circ Res 98:105–110

    Article  PubMed  CAS  Google Scholar 

  • Moran CJ, Friel AM, Smith TJ, Cairns M, Morrison JJ (2002) Expression and modulation of Rho kinase in human pregnant myometrium. Mol Hum Reprod 8:196–200

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K (2005) Identification and electrophysiological characteristics of isoforms of T-type calcium channel Ca(v)3.2 expressed in pregnant human uterus. Cell Physiol Biochem 16:245–254

    Article  PubMed  CAS  Google Scholar 

  • Ohmichi M, Koike K, Kimura A, Masuhara K, Ikegami H, Ikebuchi Y, Kanzaki T, Touhara K, Sakaue M, Kobayashi Y, Akabane M, Miyake A, Murata Y (1997) Role of mitogen activated protein kinase pathway in prostaglandin F2α-induced rat puerperal uterine contraction. Endocrinol 138:3103–3111

    Article  CAS  Google Scholar 

  • Parkington HC, Tonta MA, Davies NK, Brennecke SP, Coleman HA (1999) Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and F2alpha: involvement of the Na+ pump. J Physiol 514:229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillippe M, Saunders T, Basa A (1997) Intracellular mechanisms underlying prostaglandin F2alpha-stimulated phasic myometrial contractions. Am J Phys 273:E665–EE73

    CAS  Google Scholar 

  • Piiper A, Gebhardt R, Kronenberger B, Giannini CD, Elez R, Zeuzem S (2000) Pertussis Toxin Inhibits cholecystokinin- and epidermal growth factor-induced Mitogen-activated protein kinase activation by disinhibition of the cAMP Signaling Pathway and Inhibition of c-Raf-1. Mol Pharmacol 58:608–613

    Article  PubMed  CAS  Google Scholar 

  • Putney JW (2011) Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed) 3:980–984

    Article  Google Scholar 

  • Reiner O, Marshall JM (1976) Action of PGF, on the uterus of the pregnant rat. Naunyn Schmiedeberg's Arch Pharmacol 292:243–250

    Article  CAS  Google Scholar 

  • Ruttner Z, Ivanics T, Slaaf DW, Reneman RS, Toth A, Ligeti L (2002) In vivo monitoring of intracellular free calcium changes during uterine activation by prostaglandin f(2alpha) and oxytocin. J Soc Gynecol Investig 9:294–298

    Article  PubMed  CAS  Google Scholar 

  • Sanborn BM, Dodge K, Monga M, Qian A, Wang W, Yue C (1998) Molecular mechanisms regulating the effects of oxytocin on myometrial intracellular calcium. Adv Exp Med Biol 449:277–286

    Article  PubMed  CAS  Google Scholar 

  • Sharif NA (2008) Synthetic FP-prostaglandin-induced contraction of rat uterus smooth muscle in vitro. Prostaglandins Leukot Essent Fat Acids 78:199–207

    Article  CAS  Google Scholar 

  • Sharma A, Choudhury S, Nakade UP, Yadav RS, Garg SK (2014) Calcium influx and release mechanism(s) in histamine-induced myometrial contraction in buffaloes. Anim Reprod Sci 146:157–164

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Nakade UP, Choudhury S, Garg SK (2017a) Functional involvement of protein kinase C, Rho-kinase and TRPC3 decreases while PL-C increases with advancement of pregnancy in mediating oxytocin-induced myometrial contractions in water buffaloes (Bubalus bubalis). Theriogenology 92:176–189

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Nakade UP, Choudhury S, Yadav RS, Garg SK (2017b) Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis). Anim Reprod Sci 179:10–19

    Article  PubMed  CAS  Google Scholar 

  • Shlykov SG, Sanborn BM (2004) Stimulation of intracellular Ca2+ oscillations by diacylglycerol in human myometrial cells. Cell Calcium 36:157–164

    Article  PubMed  CAS  Google Scholar 

  • Shmygol A, Gullam J, Blanks A, Thornton S (2006) Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility. Acta Pharmacol Sin 27:827–832

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ, Sam LM, Justen JM, Bundy GL, Bala GA, Bleasdale JE (1990) Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J Pharmacol Exp Ther 253:688–697

    PubMed  CAS  Google Scholar 

  • Soliman MK (1975) Studies on the physiological chemistry of the allantoic and amniotic fluids of buffaloes at the various periods of pregnancy. Ind Vet J 52:106–112

    CAS  Google Scholar 

  • Tahara M, Morishige KI, Sawada K, Ikebuchi Y, Kawagishi R, Tasaka K, Murata Y (2002) RhoA/Rho-kinase cascade is involved in oxytocin-induced rat uterine contraction. Endocrinol 143:920–929

    Article  CAS  Google Scholar 

  • Tribe RM (2001) Regulation of human myometrial contractility during pregnancy and labour: are calcium homeostatic pathways important. Exp Physiol 86:247–254

    Article  PubMed  CAS  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  PubMed  CAS  Google Scholar 

  • Ventolini G (2013) Activation of simultaneous pathways in the initiation of parturition in humans. OA Medical Hypothesis 1:11

    Article  Google Scholar 

  • Villar A, D'Ocon P, Anselmi E (1986) Role of intracellular calcium stores in the contractile response of uterus to several agonists. Aust J Pharm 17:541–546

    CAS  Google Scholar 

  • Woodward DF, Jones RL, Narumiya S (2011) International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63:471–438

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Gupta A, Shlykov SG, Corrigan R, Tsujimoto S, Sanborn BM (2002) Multiple Trp isoforms implicated in capacitative calcium entry are expressed in human pregnant myometrium and myometrial cells. Biol Reprod 67:988–994

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research work presented in this manuscript was supported by Indian Council of Agricultural Research (ICAR), New Delhi, India, under Niche Area of Excellence Programme (Grant No. 10 (10)/2012-EPD dated 23rd March 2012) to the Department of Veterinary Pharmacology and Toxicology, DUVASU, Mathura, India. Financial assistance by ICAR is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AS, UPN, and VS conducted the functional experiments; PJ, RA, VPY, and SC performed Western blot and IHC; SC and AS analyzed the data; and SC and SKG conceptualized the experiments and wrote the MS. All the authors have read and approved the manuscript. All data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Satish Kumar Garg.

Ethics declarations

Uterus of animals is a nonedible part and is thrown away by the slaughterers/butchers as bio-waste. Therefore, uteri of buffaloes were collected from the slaughter house or butcher’s shops. Any biological experimental material collected from butcher’s shop or slaughter house is not covered under the “Guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals” of Govt. of India (as resolved by Institutional Animal Ethics Committee in its meeting held on 16.09.2016 vide circulation No. 110/IAEC/16/40/2).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Nakade, U.P., Akash, R. et al. Calcium signaling cascades differentially regulate PGF-induced myometrial contractions in water buffaloes (Bubalus bubalis). Naunyn-Schmiedeberg's Arch Pharmacol 394, 1651–1664 (2021). https://doi.org/10.1007/s00210-021-02084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02084-4

Keywords

Navigation