Skip to main content

Advertisement

Log in

Protective effects of vitamin D on learning and memory deficit induced by scopolamine in male rats: the roles of brain-derived neurotrophic factor and oxidative stress

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The beneficial effects of vitamin D (vit D) on central nervous system disorders have been suggested. In the current research, the protective effects of vit D on learning and memory deficit induced by scopolamine, oxidative stress criteria, brain-derived neurotrophic factor (BDNF), and nitric oxide (NO) in the brain were investigated. Rats were divided into five groups, including (1) Control, (2) Scopolamine (2 mg/kg), (3–5) Scopolamine + Vit D (100, 1000, and 10,000 IU/kg) groups. Vit D administrated for 2 weeks and in the third week scopolamine co-administrated with vit D and behavioral tests, including Morris water maze (MWM) and passive avoidance (PA) tests, were carried out. The cortical and hippocampal tissues were analyzed for BDNF, catalase (CAT), and superoxide dismutase (SOD) activities, thiol content, NO metabolites, and malondialdehyde (MDA) concentration. Scopolamine injection significantly impaired rats’ performance on the MWM and PA test. It further enhanced the MDA and nitrite level while decreased thiol content and BDNF levels and SOD and CAT activities in the brain. Administration of both 1000 and 10,000 IU/kg vit D improved cognitive outcome in MWM and PA tests. In addition, vit D elevated thiol content, SOD and CAT activities, and BDNF levels, while reduced nitrite and MDA concentration. Vit D also increased the levels of vit D and calcium in the serum. The results demonstrated that vit D has protective effects on scopolamine-associated learning and memory impairment by improving BDNF levels and attenuating NO and brain tissue oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abareshi A, Hosseini M, Beheshti F, Norouzi F, Khazaei M, Sadeghnia HR et al (2016) The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats. Life Sci 167(Supplement C):46–56

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • AlJohri R, AlOkail M, Haq SH (2019) Neuroprotective role of vitamin D in primary neuronal cortical culture. eNeurologicalSci. 14:43–48

    Article  PubMed  Google Scholar 

  • Alrefaie Z, Moustafa I (2020) Vitamin D3 favorable outcome on recognition memory and prefrontal cortex expression of choline acetyltransferase and acetylcholinesterase in experimental model of chronic high-fat feeding. Int J Neurosci 130(3):262–269

    Article  CAS  PubMed  Google Scholar 

  • Amini Y, Saif N, Greer C, Hristov H, Isaacson R (2020) The role of nutrition in individualized Alzheimer's risk reduction. Curr Nutr Rep 9(2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Anaeigoudari A, Shafei MN, Soukhtanloo M, Sadeghnia HR, Reisi P, Beheshti F et al (2015) Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole. Arq Neuropsiquiatr 73(9):784–790

    Article  PubMed  Google Scholar 

  • Annweiler C, Beauchet O (2012) Possibility of a new anti-alzheimer's disease pharmaceutical composition combining memantine and vitamin D. Drugs Aging 29(2):81–91

    Article  CAS  PubMed  Google Scholar 

  • Annweiler C, Schott AM, Berrut G, Chauvire V, Le Gall D, Inzitari M et al (2010) Vitamin D and ageing: neurological issues. Neuropsychobiology. 62(3):139–150

    Article  CAS  PubMed  Google Scholar 

  • Anu KR, Das S, Joseph A, Shenoy GG, Alex AT, Mudgal J (2020) Neurodegenerative pathways in Alzheimer's disease: a review. Curr Neuropharmacol. https://doi.org/10.2174/1570159X18666200807130637

  • Atif F, Yousuf S, Espinosa-Garcia C, Harris WAC, Stein DG (2020) Post-ischemic stroke systemic inflammation: immunomodulation by progesterone and vitamin D hormone. Neuropharmacology. 181:108327

    Article  CAS  PubMed  Google Scholar 

  • Babaei P, Damirchi A, Hoseini Z, Hoseini R (2019) Co-treatment of vitamin D supplementation and aerobic training improves memory deficit in ovariectomized rat. Int J Neurosci 130(6):595–600

  • Balmus IM, Ciobica A (2017) Main plant extracts' active properties effective on scopolamine-induced memory loss. Am J Alzheimers Dis Other Dement 32(7):418–428

    Article  Google Scholar 

  • Beheshti F, Karimi S, Vafaee F, Shafei MN, Sadeghnia HR, Hadjzadeh MAR et al (2017) The effects of vitamin C on hypothyroidism-associated learning and memory impairment in juvenile rats. Metab Brain Dis 32(3):703–715

    Article  CAS  PubMed  Google Scholar 

  • Bivona G, Gambino CM, Iacolino G, Ciaccio M, Vitamin D (2019) the nervous system. Neurol Res 41(9):827–835

    Article  CAS  PubMed  Google Scholar 

  • Bostanciklioglu M (2019) An update on the interactions between Alzheimer's disease, autophagy and inflammation. Gene. 705:157–166

    Article  CAS  PubMed  Google Scholar 

  • Bothwell M (2014) NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol 220:3–15

  • Camara AB, Brandao IA (2019) The relationship between vitamin D deficiency and oxidative stress can be independent of age and gender. Int J Vitam Nutr Res 91(1–2):108–123

  • Cenini G, Lloret A, Cascella R (2019) Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative Med Cell Longev 2019:2105607

    Article  Google Scholar 

  • Chang JM, Kuo MC, Kuo HT, Hwang SJ, Tsai JC, Chen HC et al (2004) 1-alpha,25-Dihydroxyvitamin D3 regulates inducible nitric oxide synthase messenger RNA expression and nitric oxide release in macrophage-like RAW 264.7 cells. J Lab Clin Med 143(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Chen WN, Yeong KY (2020) Scopolamine, a toxin-induced experimental model, used for research in Alzheimer's disease. CNS Neurol Disord Drug Targets 19(2):85–93

    Article  CAS  PubMed  Google Scholar 

  • Cheng YW, Chang CC, Chang TS, Li HH, Hung HC, Liu GY et al (2019) Abeta stimulates microglial activation through antizyme-dependent downregulation of ornithine decarboxylase. J Cell Physiol 234(6):9733–9745

    Article  CAS  PubMed  Google Scholar 

  • Cho N, Lee KY, Huh J, Choi JH, Yang H, Jeong EJ et al (2013) Cognitive-enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-inflammatory activities. Food Chem Toxicol 58:355–361

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Gooch H, Petty A, McGrath JJ, Eyles D, Vitamin D (2017) the brain: genomic and non-genomic actions. Mol Cell Endocrinol 453:131–143

    Article  CAS  PubMed  Google Scholar 

  • Dursun E, Gezen-Ak D (2013) Yilmazer S. A new mechanism for amyloid-β induction of iNOS: vitamin D-VDR pathway disruption. J Alzheimers Dis 36(3):459–474

    Article  CAS  PubMed  Google Scholar 

  • Fan YG, Pang ZQ, Wu TY, Zhang YH, Xuan WQ, Wang Z et al (2020) Vitamin D deficiency exacerbates Alzheimer-like pathologies by reducing antioxidant capacity. Free Radic Biol Med 161:139–149

    Article  CAS  PubMed  Google Scholar 

  • Farina N, Page TE, Daley S, Brown A, Bowling A, Basset T, Livingston G, Knapp M, Murray J, Banerjee S (2017) Factors associated with the quality of life of family carers of people with dementia: A systematic review. Alzheimers Dement 13(5):572–581

  • Fernandes de Abreu DA, Eyles D, Feron F, Vitamin D (2009) a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology. 34(Suppl 1):S265–S277

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa H, Nakagomi M, Yamagata N, Katsuki H, Kawahara K, Kitaoka K et al (2012) Tamibarotene: a candidate retinoid drug for Alzheimer's disease. Biol Pharm Bull 35(8):1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13(3):100–105

    Article  CAS  PubMed  Google Scholar 

  • Gascon-Barré M, Huet PM (1983) Apparent [3H]1,25-dihydroxyvitamin D3 uptake by canine and rodent brain. Am J Phys 244(3):E266–E271

    Google Scholar 

  • Giridharan VV, Thandavarayan RA, Sato S, Ko KM, Konishi T (2011) Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free Radic Res 45(8):950–958

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MC, Radiske A, Cammarota M (2019) On the Involvement of BDNF signaling in memory reconsolidation. Front Cell Neurosci 13:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grecksch G, Rüthrich H, Höllt V, Becker A (2009) Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology. 34(Suppl 1):S258–S264

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Nagappan G, Lu B (2018) Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev Neurobiol 78(7):647–659

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L et al (2011) The future of Alzheimer's disease: the next 10 years. Prog Neurobiol 95(4):718–728

    Article  PubMed  Google Scholar 

  • Haussler MR, Jurutka PW, Mizwicki M, Norman AW (2011) Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 25(4):543–559

    Article  CAS  PubMed  Google Scholar 

  • Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9(8):2459–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamilian H, Amirani E, Milajerdi A, Kolahdooz F, Mirzaei H, Zaroudi M et al (2019) The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: a systematic review and meta-analysis of randomized controlled trials. Prog Neuro-Psychopharmacol Biol Psychiatry 94:109651

    Article  CAS  Google Scholar 

  • Jayedi A, Rashidy-Pour A, Shab-Bidar S (2019) Vitamin D status and risk of dementia and Alzheimer's disease: a meta-analysis of dose-response (dagger). Nutr Neurosci 22(11):750–759

    Article  CAS  PubMed  Google Scholar 

  • Khairy EY, Attia MM (2019) Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF). Nutr Neurosci 1–10. https://doi.org/10.1080/1028415X.2019.1665854

  • Koshkina A, Dudnichenko T, Baranenko D, Fedotova J, Drago F (2019) Effects of Vitamin D3 in long-term ovariectomized rats subjected to chronic unpredictable mild stress: BDNF, NT-3, and NT-4 implications. Nutrients 11(8):1726

    Article  CAS  PubMed Central  Google Scholar 

  • Latimer CS, Brewer LD, Searcy JL, Chen KC, Popović J, Kraner SD et al (2014) Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci U S A 111(41):E4359–E4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CI, Chang YC, Kao NJ, Lee WJ, Cross TW, Lin SH (2020) 1,25(OH)(2)D(3) alleviates Aβ(25-35)-induced tau hyperphosphorylation, excessive reactive oxygen species, and apoptosis through interplay with glial cell line-derived neurotrophic factor signaling in SH-SY5Y cells. Int J Mol Sci 21(12):4215

    Article  CAS  PubMed Central  Google Scholar 

  • Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH et al (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 83(10):920–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madesh M, Balasubramanian K (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 35(3):184–188

    CAS  PubMed  Google Scholar 

  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer's disease: clinical trials and drug development. Lancet Neurol 9(7):702–716

    Article  CAS  PubMed  Google Scholar 

  • Masoumi A, Goldenson B, Ghirmai S, Avagyan H, Zaghi J, Abel K et al (2009) 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer's disease patients. J Alzheimers Dis 17(3):703–717

    Article  CAS  PubMed  Google Scholar 

  • Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C et al (2018) A long journey into aging, brain aging, and Alzheimer's disease following the oxidative stress tracks. J Alzheimers Dis 62(3):1319–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Medhat E, Rashed L, Abdelgwad M, Aboulhoda BE, Khalifa MM, El-Din SS (2020) Exercise enhances the effectiveness of vitamin D therapy in rats with Alzheimer's disease: emphasis on oxidative stress and inflammation. Metab Brain Dis 35(1):111–120

  • Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokhtari-Zaer A, Hosseini M, Salmani H, Arab Z, Zareian P (2020) Vitamin D3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sci 253:117703

    Article  CAS  PubMed  Google Scholar 

  • Navabi SP, Sarkaki A, Mansouri E, Badavi M, Ghadiri A, Farbood Y (2018) The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer's disease. Behav Brain Res 337:99–106

    Article  CAS  PubMed  Google Scholar 

  • Naveilhan P, Neveu I, Baudet C, Funakoshi H, Wion D, Brachet P et al (1996) 1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Brain Res Mol Brain Res 41(1-2):259–268

    Article  CAS  PubMed  Google Scholar 

  • Neveu I, Naveilhan P, Baudet C, Brachet P, Metsis M (1994) 1,25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport 6(1):124–126

    Article  CAS  PubMed  Google Scholar 

  • Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC (2019) Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci 20(2):257

  • Overeem K, Alexander S, Burne THJ, Ko P, Eyles DW (2019) Developmental vitamin D deficiency in the rat impairs recognition memory, but has no effect on social approach or hedonia. Nutrients. 11(11):2713

    Article  CAS  PubMed Central  Google Scholar 

  • Salami M, Talaei SA, Davari S, Taghizadeh M (2012) Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci Lett 509(1):56–59

    Article  CAS  PubMed  Google Scholar 

  • Saleh SR, Abady MM, Nofal M, Yassa NW, Abdel-Latif MS, Nounou MI et al (2020) Berberine nanoencapsulation attenuates hallmarks of scoplomine induced Alzheimer's-like disease in rats. Curr Clin Pharmacol. https://doi.org/10.2174/1574884715666200628112844

  • Sanders KM, Stuart AL, Williamson EJ, Jacka FN, Dodd S, Nicholson G et al (2011) Annual high-dose vitamin D3 and mental well-being: randomised controlled trial. Br J Psychiatry 198(5):357–364

    Article  PubMed  Google Scholar 

  • Sepehrmanesh Z, Kolahdooz F, Abedi F, Mazroii N, Assarian A, Asemi Z et al (2016) Vitamin D supplementation affects the Beck Depression Inventory, insulin resistance, and biomarkers of oxidative stress in patients with major depressive disorder: a randomized, controlled clinical trial. J Nutr 146(2):243–248

    Article  CAS  PubMed  Google Scholar 

  • Smolders J, Moen SM, Damoiseaux J, Huitinga I, Holmoy T (2011) Vitamin D in the healthy and inflamed central nervous system: access and function. J Neurol Sci 311(1-2):37–43

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Bai Y, Zhao R, Guo Z, Su X, Li P et al (2019) Neuroprotective effects of matrine on scopolamine-induced amnesia via inhibition of AChE/BuChE and oxidative stress. Metab Brain Dis 34(1):173–181

    Article  CAS  PubMed  Google Scholar 

  • Taghizadeh M, Talaei SA, Djazayeri A, Salami M (2014) Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer's disease. Nutr Neurosci 17(4):172–177

    Article  CAS  PubMed  Google Scholar 

  • Taheri Moghadam M, Asadi Fard Y, Saki G, Nikbakht R (2019) Effect of vitamin D on apoptotic marker, reactive oxygen species and human sperm parameters during the process of cryopreservation. Iran J Basic Med Sci 22(9):1036–1043

    PubMed  PubMed Central  Google Scholar 

  • Tang KS (2019) The cellular and molecular processes associated with scopolamine-induced memory deficit: a model of Alzheimer's biomarkers. Life Sci 233:116695

    Article  CAS  PubMed  Google Scholar 

  • Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M et al (1993) Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron. 10(3):475–489

    Article  CAS  PubMed  Google Scholar 

  • Willems HM, van den Heuvel EG, Carmeliet G, Schaafsma A, Klein-Nulend J (2012) Bakker AD. VDR dependent and independent effects of 1,25-dihydroxyvitamin D3 on nitric oxide production by osteoblasts. Steroids. 77(1-2):126–131

    Article  CAS  PubMed  Google Scholar 

  • Wrzosek M, Lukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piatkiewicz P et al (2013) Vitamin D and the central nervous system. Pharmacol Rep 65(2):271–278

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Liang L (2020) Vitamin D3/vitamin D receptor signaling mitigates symptoms of post-stroke depression in mice by upregulating hippocampal BDNF expression. Neurosci Res. https://doi.org/10.1016/j.neures.2020.08.002

  • Yang Q, Huang Q, Hu Z, Tang X (2019) Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation. Front Neurosci 13:1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Yosaee S, Soltani S, Esteghamati A, Motevalian SA, Tehrani-Doost M, Clark CCT et al (2019) Effects of zinc, vitamin D, and their co-supplementation on mood, serum cortisol, and brain-derived neurotrophic factor in patients with obesity and mild to moderate depressive symptoms: a phase II, 12-wk, 2x2 factorial design, double-blind, randomized, placebo-controlled trial. Nutrition. 71:110601

    Article  PubMed  Google Scholar 

  • Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signalling in Alzheimer's disease. Brain Res 1000(1-2):32–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to extend our honest thanks to the Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran, that helped us in fulfilling this study and Hormozgan University of Medical Sciences for its financial support.

Funding

This research project was financially supported by the Vice Chancellor of Research at Hormozgan University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MH and HG conceived and designed the research. FM, NM, FB, HS, and ZA conducted experiments. HS and MH analyzed data. FM, HS, and MH wrote the manuscript. All authors read and approved the manuscript, and all data were generated in-house, and that no paper mill was used.

Corresponding authors

Correspondence to Hamideh Ghanbari or Mahmoud Hosseini.

Ethics declarations

Ethics approval

The animal procedures were carried out in accordance with the standards of the Guide for the Care and Use of Laboratory Animals, and the study protocol was approved by the Committee on Animal Research at Hormozgan University of Medical Sciences (IR.HUMS.REC. 1398.053).

Consent to participate

Related to “Authors include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.” The authors state that they did not use human subjects in this study.

Consent for publication

The authors state that they did not use human subjects in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLS 37 kb)

ESM 2

(XLS 20 kb)

ESM 3

(XLS 19 kb)

ESM 4

(XLS 19 kb)

ESM 5

(XLS 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, F., Ghanbari, H., Marefati, N. et al. Protective effects of vitamin D on learning and memory deficit induced by scopolamine in male rats: the roles of brain-derived neurotrophic factor and oxidative stress. Naunyn-Schmiedeberg's Arch Pharmacol 394, 1451–1466 (2021). https://doi.org/10.1007/s00210-021-02062-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02062-w

Keywords

Navigation