Abstract
The increasing population of the world requires novel techniques to feed everyone, which can replace or work along with traditional methods to increase production of agricultural crops. In recent times, nanotechnology is considered as a promising and emerging approach to be incorporated in agriculture to improve productivity of different crops by the administration of nanoparticles through seed treatment, foliar spray on plants, nano-fertilizers for balanced crop nutrition, nano-herbicides for effective weed control, nanoinsecticides for plant protection, early detection of plant diseases and nutrient deficiencies using diagnostics kits, and nano-pheromones for effective monitoring of pests. Further, distinct nanoparticles with unique physicochemical and biological properties are used in agriculture to increase the percentage of seed germination, which is the initial step to increase the crop yield. In the context of agricultural crops, nanoparticles have both positive effects on seed quality parameters, such as germination percentage, seedling length, seedling dry weight and vigor indices, as well as negative impacts of causing toxicity toward the environment. Thus, the aim of this review article is to provide a comprehensive overview on the effects of super-dispersive metal powders, such as zinc, silver, and titanium nanoparticles on the seed quality parameters of different crops. In addition, the drawback of conventional seed growth enhancers, impact of metal nanoparticles toward seeds, and mechanism of nanoparticles to increase seed germination were also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
N/A.
References
Aarti PD, Tanaka R, Tanaka A (2006) Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol Plant 128(1):186–197. https://doi.org/10.1111/j.1399-3054.2006.00720.x
Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020) nanoparticle-Mediated Seed priming improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in texas. Sci Rep 10(1):1–16
Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric SciTechnol A 2(6A):815
Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4(8):809–816
Afrayeem SM, Chaurasia AK (2017) Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). J Pharm Phytochem 6(5):1564–1566
Afsharinejad A, Davy A, Jennings B, Brennan C (2015) Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet Things J 3(1):59–69
Ahmed S, Kumar S (2020) Seed coating with fungicides and various treatments for protection of crops: a review. Int J Agric Environ Sustain 2(1):6–13
Ahmed E, Azeem A, Elsayed B (2013) Phytotoxicity of silver nanoparticles on Vicia faba seedlings. New York Sci J 6:148–156
Ahmed M, Qadeer U, Ahmed ZI, Hassan F-U (2016) Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Agron Soil Sci 62(3):299–315
Alam MJ, Sultana F, Iqbal MT (2015) Potential of iron nanoparticles to increase germination and growth of wheat seedling. J Nanosci AdvTechnol 1(3):14–20
Almutairi ZM (2016) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int J Agric Biol 18(2):449–457
Almutairi WHC, Alharbi A (2015) Effect of Silver Nanoparticles on Seed Germination of Crop Plants. J Adv Agric 4:280–285. https://doi.org/10.24297/jaa.v4i1.4295
Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Publ 2(4):1–4
Amooaghaie R, Tabatabaei F, A-m A (2015) Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf 113:259–270. https://doi.org/10.1016/j.ecoenv.2014.12.017
Ampleyeva LE, Konkov AA, Rudnaya AV (2012) Selenium nanoparticles suspension influence on the corn “Obsky 140” seeds qualitative and quantitative indicators. Bull PA Kostychev Ryazan Agrotechnol Univ 3:33–35
Anandaraj K, Natarajan N (2017) Effect of Nanoparticles for seed quality enhancement in onion [Allium cepa (Linn) cv. CO (On)] 5. Int J Curr Microbiol App Sci 6:3714–3724
Anju A, Ravi SP, Bechan S (2010) Water pollution with special reference to pesticide contamination in India. J Water Resource Protect 2(05):432–448
Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:641759
Aziz HMMA, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):17
Bao-Shan L, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15(2):138–140
Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253
Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857
Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862
Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals.
Berahmand AA, Panahi AG, Sahabi H, Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A, Karimpour H, Gallehgir O (2012) Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.). Biol Trace Elem Res 149(3):419–424
Bhagat M, Anand R, Datt R, Gupta V, Arya S (2019) Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater 29(3):1039–1047. https://doi.org/10.1007/s10904-018-0994-5
Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55(6):708–746
Blackmore S (1994) Precision farming: an introduction. Outlook Agric 23(4):275–280
Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinformatics 1(4):282
Borase HP, Salunke BK, Salunkhe RB, Patil CD, Hallsworth JE, Kim BS, Patil SV (2014) Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl Biochem Biotechnol 173(1):1–29
Broersma DB, Luckmann WH (1967) Seed treatment techniques and phytotoxicity studies on some grain and vegetable crops. J Econ Entomol 60(3):821–823
Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of PLant Physiologists, Rockville
Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and Molecular Biology of Plants. Wiley
Cakmak I (2000a) Tansley Review No. 111. New Phytol 146(2):185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
Cakmak I (2000b) Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species. New Phytol 146:185–205
Camargo A, Smith JS (2009) Image pattern classification for the identification of disease causing agents in plants. Comput Electron Agric 66(2):121–125
Camilli L, Pisani C, Gautron E, Scarselli M, Castrucci P, D’Orazio F, Passacantando M, Moscone D, De Crescenzi M (2014) A three-dimensional carbon nanotube network for water treatment. Nanotechnology 25(6):065701
Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO 2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L.and Zea mays L. J Nanopart Res 13(6):2443–2449
Chakravarty D, Erande MB, Late DJ (2015) Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric 95(13):2772–2778
Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45
Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications,and applications. Chem Rev 107(7):2891–2959
Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12
Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594
Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1/6):17–31
Churilov GI, Polischuk SD, Selivanov VN (2000) 5th All-Russian Mater. In. pp 343-344
Clemente Z, Grillo R, Jonsson M, Santos NZP, Feitosa LO, Lima R, Fraceto LF (2014) Ecotoxicological evaluation of poly (ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14(7):4911–4917
Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119
Dağhan H (2018) Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Appl Ecol Environ Res 16(5):6873–6883
de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174
De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer
Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105
Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155(2):283–286. https://doi.org/10.1007/s12011-013-9788-3
Dehkourdi EH, Chehrazi M, Hosseini H, Hosseini M (2014) The effect of anatase nanoparticles (TiO2) on pepper seed germination (Capsicum annum L.). Int J Biosci (IJB) 4(5):141–145
DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91–91
Dhewa T (2015) Nanotechnology applications in agriculture: an update. Octa J Environ Res 3(2)
Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1–e1
Diaz-Ambrona CGH, Maletta E (2014) Achieving global food security through sustainable development of agriculture and food systems with regard to nutrients, soil, land, and waste management. Curr Sustain/Renew Energy Rep 1(2):57–65
Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver Nanoparticles Disrupt Wheat (Triticum aestivum L.) Growth in a Sand Matrix. Environ Sci Technol 47(2):1082–1090. https://doi.org/10.1021/es302973y
Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9(3):271–278
Du W, Yang J, Peng Q, Liang X, Mao H (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–116
Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Sustainable agriculture reviews. Springer, pp 307–330
Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep 15:11–23
Duvall MN (2012) FDA regulation of nanotechnology. Beveridge & Diamond, PG, Washington
Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp 271-288
Edwards DK (1962) Electrostatic charges on insects due to contact with different substrates. Can J Zool 40(4):579–584
El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2(03):8863
Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926. https://doi.org/10.1021/es0108584
El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49. https://doi.org/10.1002/tox.20610
Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5(12):1368–1373
Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1(4):196–200
Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332
Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Sci Total Environ 466:503–512
Fao FAO (2013) Statistical yearbook. World Food and Agriculture Food and Agriculture Organization of the United Nations, Rome, p 289
Farahani HA, Sani B, Maroufi K (2012) The germination variations in fleawort (Plantago psyllium L.) by nano-particle. In, 2012. pp 43-46
Feizi H, Amirmoradi S, Abdollahi F, Pour SJ (2013) Comparative Effects of Nanosized and Bulk Titanium Dioxide Concentrations on Medicinal Plant Salvia officinalis L. Ann Res Rev Biol:814–824
Feng J, Chen Q, Wu X, Jafari SM, McClements DJ (2018) Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environ Sci Pollut Res 25(22):21742–21751
Folmanis GE, Kovalenko NV (1999) Ultradisperse metals in agricultural production. М: IMET RAS:80
Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100(2):241–254. https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
Frimpong RA, Fraser S, Zach Hilt J (2007) Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J Biomed Mater Res Part A: An Official Journal of The So for Biomaterials and the Korean Society for Biomaterials 80(1):1–6
Galbraith DW (2007) Silica breaks through in plants. Nat Nanotechnol 2(5):272–273
Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosystems 143(1):81–96
Ge S, Lu J, Ge L, Yan M, Yu J (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 79(5):1704–1709
Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2012) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337. https://doi.org/10.3109/17435390.2012.658094
Ghavam M (2018) Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress. J Rangeland Sci 8(1):93–100
Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186(1):952–955
Ghorbanpour M (2015) Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J Plant Physiol 20(3):249–256
Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81(10):1253–1262. https://doi.org/10.1016/j.chemosphere.2010.09.022
Gokak IB, Taranath TC (2015) Seed germination and growth responses of Macrotyloma uniflorum (Lam.) Verdc. exposed to Zinc and Zinc nanoparticles. Int J Environ Sci 5(4):840–847
Gomathi T, Rajeshwari K, Kanchana V, Sudha PN, Parthasarathy K (2019) Impact of nanoparticle shape, size, and properties of the sustainable nanocomposites. In: Sustainable Polymer Composites and Nanocomposites. Springer, pp 313-336
Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174. https://doi.org/10.1016/j.saa.2012.12.087
Goswami P, Mathur J (2019) Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci Today 6(2):232–242
Gruyer N, Dorais M, Bastien C, Dassylva N, (2014)Triffault-Bouchet G interaction between silver nanoparticles and plant growth. In, 2014. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 795-800. https://doi.org/10.17660/ActaHortic.2014.1037.105
Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159(6):1551–1559
Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23(7):1760
Guo J (2004) Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int J Nanotechnol 1(1-2):193–225
Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117. https://doi.org/10.1016/j.scienta.2013.06.034
Hampton JG (2002) What is seed quality? Seed Sci Technol 30(1):1–10
Hojjat SS, Hojjat H (2015) Effect of nano silver on seed germination and seedling growth in Fenugreek seed. Int J Food Eng 1(2):106–110
Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16(11):26644–26653
Hossain Z, Mustafa G, Sakata K, Komatsu S (2016) Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater 304:291–305. https://doi.org/10.1016/j.jhazmat.2015.10.071
Hussain M, Raja NI, Iqbal M, Sabir S, Yasmeen F (2017) In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. 3. Biotech 7(2):1–8
Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111
Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46
Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302. https://doi.org/10.1126/science.3287616
Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A. Science 43(2):387–395
Ivanycheva YN, Zheglova TV, Polishchuk SD (2012) Copper nanopowders and copper oxide effect onto phytohormones activity at Vicia and summer wheat sprouts. Vestn Ryazansk Gos Agrotekhnol Univ im PA Kostycheva 1:12–14
Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25(3):443–447
Jassem AF, Rachana S, Jyoti Y (2018) Synthesis of silver nanoparticles from Fargesia Sp. Jiuzhaigou leaf and investigating it’s effects on plant growth.
Jeevanandam J, Kaliyaperumal A, Sundararam M, Danquah MK (2020) Nanomaterials as toxic gas sensors and biosensors. In: Nanosensor Technologies for Environmental Monitoring. Springer, Cham, pp 389–430
Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42. https://doi.org/10.1080/17435390701882478
Joseph T, Morrison M (2006) Nanotechnology in agriculture and food: a nanoforum report. Nanoforum. org,
Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13(8):677–684
Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57(6):569–596
Kannan A (2011) Nano-fertilizer’takes shape at TNAU. The Hindu news paper dated 26
Karimi N, Minaei S, Almassi M, Shahverdi A (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7
Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2016) Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnol 10(4):171–177
Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644
Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA, Tremel W (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808
Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227
Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033
Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135
Kim SW, Kim KS, Lamsal K, Kim Y-J, Kim SB, Jung M, Sim S-J, Kim H-S, Chang S-J, Kim JK (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764
Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):651–658. https://doi.org/10.1016/j.procbio.2012.01.006
Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468
Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015) Development and evaluation of alginate–chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637
Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246. https://doi.org/10.1016/j.scitotenv.2009.06.024
Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619
Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163
Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2016) Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Microporous Mesoporous Mater 232:174–183
Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70
Lauterwasser C (2005) Small sizes that matter: opportunities and risks of nanotechnologies. Report Co-operation OECD Inte Futures Programme
Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci 3(7):749–760
Lévesque CA (2001) Molecular methods for detection of plant pathogens—what is the future? Can J Plant Pathol 23(4):333–336
Lewis RW, Bertsch PM, McNear DH (2019) Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria–a critical review. Nanotoxicology 13(3):392–428
Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792
Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250
Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585
Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132
Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178. https://doi.org/10.1007/s12011-007-8069-4
Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4(1):5686. https://doi.org/10.1038/srep05686
Liu G, Porterfield DM, Li Y, Klassen W (2012) Increased oxygen bioavailability improved vigor and germination of aged vegetable seeds. HortScience 47(12):1714–1721
López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320
Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171
Luna-delRisco M, Orupõld K, Dubourguier H-C (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189(1-2):603–608
Lyons K, Scrinis G, Whelan J (2018) Nanotechnology, agriculture, and food. In: Nanotechnology and global sustainability. CRC Press, pp 146–169
Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO 2 and In 2 O 3 nanoparticles. Environ Sci: Nano 3(6):1369–1379
Madhuri S, Choudhary AK, Rohit K (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):78–82
Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011
Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102
Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017a) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):1–21
Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017b) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):8263. https://doi.org/10.1038/s41598-017-08669-5
Maroufi K, Farahani HA, Moradi O (2011) Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Adv Environ Biol 5:3659–3664
Marschner C, H. Marschner (1996), Mineral nutrition of higher plants, Academic Press, London (1995), p. 889,(ISBN 0-12-473543-6). Price: 29.95 Pound Sterling. Urban & Fischer,
Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Nanotechnologies in food and agriculture. Springer, pp 25-67
Miao YF, Wang ZH, Li SX (2015) Relation of nitrate n accumulation in dryland soil with wheat response to n fertilizer. Field Crop Res 170:119–130
Milewska-Hendel A, Gawecki R, Zubko M, Stróż D, Kurczyńska E (2016) Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants.
Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380
Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92(5):875–885
Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L, and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54
Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339. https://doi.org/10.1016/j.ecoenv.2014.07.013
Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881
Mitchell L (2001) Issues in food security. Agric Inform Bull Num:765–811
Molina MA, Ramos JL, Espinosa-Urgel M (2006) A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environ Microbiol 8(4):639–647
Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165
Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346
Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419
Mujeeb M, Ismail MV, Aqil M, Khan AH, Ikram S, Ahmad A (2018) Evaluation of phytotoxic impact of plant mediated silver nanoparticles on seed germination and growth of seedling of Cassia occidentalis. Pharm Innov J 7:08–12
Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172
Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7(63)
Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health A 46(14):1732–1735
Nadagouda MN, Varma RS (2009) Risk reduction via greener synthesis of noble metal nanostructures and nanocomposites. In: Nanomaterials: Risks and Benefits. Springer, pp 209-217
Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163
Ndeh NT, Maensiri S, Maensiri D (2017) The effect of green synthesized gold nanoparticles on rice germination and roots. Adv Nat Sci Nanosci Nanotechnol 8(3):035008
Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27(8):461–467
Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. science 311(5761):622–627
Ngo QB, Dao TH, Nguyen HC, Tran XT, Van Nguyen T, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5(1):015016
Ombódi A, Saigusa M (2000) Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. J Plant Nutr 23(10):1485–1493
Opara L (2004) Emerging technological innovation triad for smart agriculture in the 21st century. Part I. Prospects and impacts of nanotechnology in agriculture.
Opoku G, Davies FM, Zetina EV, Gamble EE (1996) Relationship between seed vigour and yield of white beans (Phaseolus vulgaris L.). Plant Varieties Seeds 9(2):119–125
Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907. https://doi.org/10.1002/etc.2131
Ozdemir M, Kemerli T (2016) Innovative applications of micro and nanoencapsulation in food packaging. Encapsulation Control Release Technol Food Syst 333-378
Panáček A, Kolář M, Večeřová R, Prucek R, Soukupova J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340
Panda SK (2017) Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L) seed. J Plant Sci Phytopathol 1:062–070
Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46(2):289–294. https://doi.org/10.1023/A:1022871131698
Pandey C, Khan E, Mishra A, Sardar M, Gupta M (2014) Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L. (Indian Mustard) Plant. Adv Sci Lett 20(7-8):1673–1676. https://doi.org/10.1166/asl.2014.5518
Park H-J, Kim S-H, Kim H-J, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302
Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26(3):693–701. https://doi.org/10.1007/s10876-014-0728-y
Pavlov GV (2000) Bioactivity of superdisperse iron nanoparticles versus different biological objects in normal and pathological states. Moscow, Russia
Pawar VA, Ambekar JD, Kale BB, Apte SK, Laware SL Response in chickpea (Cicer arietinum L.) seedling growth to seed priming with iron oxide nanoparticles.
Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Management Science: formerly. Pestic Sci 65(5):540–545
Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymers 2(3):229–251
Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int
Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452-453:321–332. https://doi.org/10.1016/j.scitotenv.2013.02.059
Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45(2):762–768
Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62(35):8777–8785
Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014
Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927
Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014
Prasanna BM, Hossain F (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, IARI, New Delhi 110012
Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956
Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545
Rahman KMA, Debnath SC (2015) Agrochemical use, environmental and health hazards in Bangladesh. International Research Journal of Interdisciplinary & Multidisciplinary. Studies 1:75–79
Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293
Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 22(14):11057–11066. https://doi.org/10.1007/s11356-015-4355-4
Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57
Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594
Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64(16):3111–3118
Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96
Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913
Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231
Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3(2):467–473
Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58
Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6(1):517–522
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498
Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Nanotechnology and Plant Sciences. Springer, pp 1-17
Robinson DKR, Salejova-Zadrazilova G (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. Working paper version,
Roco MC (2003) Broader societal issues of nanotechnology. J Nanopart Res 5(3-4):181–189
Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea). Front Plant Sci 7(815). https://doi.org/10.3389/fpls.2016.00815
Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK (2006) Mechanisms of Cell Death in Oxidative Stress. Antioxid Redox Signal 9(1):49–89. https://doi.org/10.1089/ars.2007.9.49
S B M, Biradar D, Aladakatti Y (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–13
Sabir S, Arshad M, Saboon SHS, Batool T, Farqaulit F, Chaudhari SK (2011) Effect of green synthesized copper nanoparticles on seed germination and seedling growth in wheat.
Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N (2014) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic 175:1–8
Sah S, Sorooshzadeh A, Rezazadehs H, Naghdibadi HA (2011) Effect of nano silver and silver nitrate on seed yield of borage. J Med Plants Res 5(2):171–175
Salama HMH (2012) Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). In.
Samadi N, Yahyaabadi S, Rezayatmand Z (2014) Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot Length and photosynthetic pigments of Mentha piperita. Int J Plant Soil Sci 3(4):408–418
Sani B (2012) Energy efficiency management (EEM) by use of nanoparticles in maize seedling growth. Eur J Exp Biol 2(5):1918–1921
Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies. Springer, pp 1-39
Savci S (2012a) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73
Savci S (2012b) Investigation of effect of chemical fertilizers on environment. Apcbee Procedia 1:287–292
Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2
Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101(1):7
Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9(1):17–18
Senthilkumar S (2011) Customizing nanoparticles for the maintanence of seed vigour and viability in Blackgram (Vigna mungo) cv. VBN 4. M Sc(Agri) Thesis
Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6(6):461–465
Seo Y-C, Cho J-S, Jeong H-Y, Yim T-B, Cho K-S, Lee T-W, Jeong M-H, Lee G-H, Kim S-I, Yoon W-B (2011) Enhancement of antifungal activity of anthracnose in pepper by nanopaticles of thiamine di-lauryl sulfate. Korean J Med Crop Sci 19(3):198–204
Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598
Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92
Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1-4):143–148
Shah F, Wu W (2019) Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11(5):1485
Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019a) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558
Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019b) Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 24 (14). https://doi.org/10.3390/molecules24142558
Shankar S, Rhim JW (2016a) Polymer nanocomposites for food packaging applications. Funct Physical Properties Polymer Nanocomposites 29
Shankar S, Rhim J-W (2016b) Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26
Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric, Environ Biotechnol 10(6):675–680
Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012a) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233
Sharma P, Jha A, Dubey R, Pessarakli M (2012b) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037
Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture-A review. J Appl Nat Sci 7(1):521–539
Shi H, Chen J, Li G, Nie X, Zhao H, Wong P-K, An T (2013) Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X= Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light. ACS Appl Mater Interfaces 5(15):6959–6967
Shyla KK, Natarajan N (2016) Effect of nanoparticles in volatile production during seed storage of groundnut. Int J Agric Sci 12(2):191–198
Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17
Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct 3(3):115–122
Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3(4):353–364
Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol 233:84–94
Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31(9):2147–2152
Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67
Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci: formerly Pesticide Science 66(6):577–579
Stadler T, Lopez Garcia GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70(1):17–25
Stadler T, Buteler M, Valdez SR, Gitto JG (2018) Particulate nanoinsecticides: a new concept in insect pest management. Insecticides: Agriculture and Toxicology:83
Stampoulis D, Sinha SK, White JC (2009) Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environ Sci Technol 43(24):9473–9479. https://doi.org/10.1021/es901695c
Sun X, Zhu Y, Wang X (2012) Amperometric immunosensor based on deposited gold nanocrystals/4, 4′-thiobisbenzenethiol for determination of carbofuran. Food Control 28(1):184–191
Swaminathan MS, Bhavani RV (2013) Food production & availability-Essential prerequisites for sustainable food security. Indian J Med Res 138(3):383
Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16(10):1977–1983
Tarafdar JC, Xiong Y, Wang W-N, Quinl D, Biswas P (2012a) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14(2):138–144
Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U, Kaul RK (2012b) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. AdvSci Eng Med 4(4):324–328
Tarafdar JC, Raliya R, Rathore I (2012c) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6(2):84–89
Thompson K (1987) Seeds and seed banks. New Phytol 106:23–34
Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309. https://doi.org/10.1016/j.ecoenv.2014.03.022
Tile VG, Suraj HS, Uday BM, Sahana SG (2016) Recent Trends in Nanotechnology and its Future Scope -A Review. Int J Emerging Technol 7(2):377–385
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677
Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300
Trenkel ME (1997) Controlled-release and stabilized fertilizers in agriculture. Int Fertil Ind Assoc Paris, vol 1
Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181
Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198
Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177
Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18(2):137–147
ur Rehman H, Iqbal H, Basra SMA, Afzal I, Farooq M, Wakeel A, Ning W (2015) Seed priming improves early seedling vigor, growth and productivity of spring maize. J Integr Agric 14(9):1745–1754
Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042
Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171(13):1142–1148. https://doi.org/10.1016/j.jplph.2014.05.002
Velmurugan P, Shim J, Kim K, Oh B-T (2016) Prunus × yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett 174:61–65. https://doi.org/10.1016/j.matlet.2016.03.069
Vijayalakshmi V, Ramamoorthy K, Natarajan N (2018) TIO2 Nano particles on extending seed vigour and viability of naturally aged maize (Zea mays L.) Seeds. J Pharm Phytochem 7(1):2221–2224
Villa F, Silva DFD, Rotili MCC, Herzog NFM, Malavasi MDM (2019) Seed physiological quality and harvest point of dovyalis fruits. Pesquisa Agropecuária Tropical 49
Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334
Vithanage M, Herath I, Almaroai YA, Rajapaksha AU, Huang L, Sung J-K, Lee SS, Ok YS (2017) Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environ Geochem Health 39(6):1409–1420
Wakshlak RB-K, Pedahzur R, Avnir D (2015) Antibacterial activity of silver-killed bacteria: the" zombies" effect. Sci Rep 5:9555
Wan Y, Li J, Ren H, Huang J, Yuan H (2014) Physiological investigation of gold nanorods toward watermelon. J Nanosci Nanotechnol 14(8):6089–6094
Wang Z-h, Y-f M, S-x L (2015a) Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China. Field Crop Res 183:211–224
Wang L, Zhu J, Wu Q, Huang Y (2015b) Effects of Silver Nanoparticles on Seed Germination and Seedling Growth of Radish (Raphanus sativus L.). In, 2015. Atlantis Press
Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12(3):2221–2228
Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093
Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GQM (2008) Nanomaterials in soils. Geoderma 146(1-2):291–302
Wimalasekera R (2015) Role of seed quality in improving crop yields. In: Crop production and global environmental issues. Springer, pp 153-168
Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3(4):126
Wu SG, Huang L, Head J, Ball M, Tang YJ, Chen D-R (2013) Electrospray facilitates the germination of plant seeds. Aerosol Air Qual Res 14(3):632–641
Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Lett 6(8):1794–1807. https://doi.org/10.1021/nl061025k
Xiang L, Zhao H-M, Li Y-W, Huang X-P, Wu X-L, Zhai T, Yuan Y, Cai Q-Y, Mo C-H (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22(14):10452–10462
Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO 2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88
Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169
Yasmeen F, Razzaq A, Iqbal MN, Jhanzab HM (2015) Effect of silver, copper and iron nanoparticles on wheat germination. Int J Biosci 6(4):112–117
Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20(12):8636–8648. https://doi.org/10.1007/s11356-013-1798-3
Yien L, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater
Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674. https://doi.org/10.1371/journal.pone.0047674
Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535
Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3(1):17
Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19(5):683–693
Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91
Zhu S, Oberdörster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9
Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717
Acknowledgement
The authors acknowledge the support of FCT-Fundação para a Ciência e a Tecnologia (Base Fund UIDB/00674/2020 and Programmatic Fund UIDP/00674/2020, Portuguese Government Funds), ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação through the project M1420-01-0145-FEDER-000005-CQM+ (Madeira 14-20 Program).
Author information
Authors and Affiliations
Contributions
NS planned draft of manuscript and wrote manuscript. AB and JJ reviewed and edited manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
All authors are agreed to publish manuscript.
Consent for publication
The final content of this paper was read and approved by all authors for publication.
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singh, N., Bhuker, A. & Jeevanadam, J. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn-Schmiedeberg's Arch Pharmacol 394, 1067–1089 (2021). https://doi.org/10.1007/s00210-021-02057-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00210-021-02057-7