Skip to main content
Log in

Astragaloside IV and echinacoside benefit neuronal properties via direct effects and through upregulation of SOD1 astrocyte function in vitro

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS), also known as a major type of motor neuron disease, is a disease characterized by the degeneration of both upper and lower motor neurons. Astragaloside IV (AST) is one of the most effective compounds isolated from Astragalus membranaceus. Echinacoside (ECH) is also an active constituent in Cistanche tubulosa. These two herbs had been used in treating disease described like ALS in ancient China under the guidance of traditional Chinese medicine theory and now they are still being used extensively for ALS in current Chinese medicine practice, but whether AST or ECH has effect on ALS disease condition is still unclear. Survivals of primary cultured neuron and astrocyte were determined by the MTS assay. Proteins including GLT1 and GFAP, from SOD1 G93A Tg (transgenic) astrocyte lysate were determined by Western blot. Synaptic markers, PSD95 and VGLUT1, were stained by immunofluorescence and observed by a confocal microscope. Proper dilution of AST and ECH was confirmed to be not harmful to both astrocytes and neurons. AST and ECH enhanced neuronal synaptic markers density or intensity/area in different aspects. Both AST and ECH could significantly rescue SOD1 astrocyte conditional medium–treated neuronal survival and synapse loss. Ten micromolars ECH could significantly rescue the suppressed GLT1 level expressed by SOD1 Tg astrocyte. This present research proved that AST and ECH could benefit neuronal properties and rescue certain dysfunction, such as GLT1 low expression, loss of neuron-supporting function, of astrocytes under SOD1 condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen NJ, Eroglu C (2017) Cell biology of astrocyte-synapse interactions. Neuron. 96(3):697–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • An T, Shi P, Duan W, Zhang S, Guo Y (2014) Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 49(3):1435–1448

    CAS  PubMed  Google Scholar 

  • Bendotti C, Tortarolo M, Suchak SK, Calvaresi N, Carvelli L, Bastone A, Rizzi M, Rattray M, Mennini T (2008) Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 79(4):737–746

    Google Scholar 

  • Bo P (2011) Traditional Chinese internal medicine, 2nd edn. People’s Medical Publishing House, Beijing

    Google Scholar 

  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Cleveland DW (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 18(2):327–338

    CAS  PubMed  Google Scholar 

  • Chan WS, Durairajan SSK, Lu JH, Wang Y, Li M (2009) Neuroprotective effects of astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochem Int 55(6):414–422

    CAS  PubMed  Google Scholar 

  • Chang CP, Liu YF, Lin HJ, Hsu CC, Lin KC (2015) Beneficial effect of astragaloside on Alzheimer’s disease condition using cultured primary cortical cells under β-amyloid exposure. Mol Neurobiol 53(10):7329–7340

    PubMed  Google Scholar 

  • Chen R, Shao H, Lin S, Zhang J-J, Xu K-Q (2011) Treatment with Astragalus membranaceus produces antioxidative effects and attenuates intestinal mucosa injury induced by intestinal ischemia-reperfusion in rats. Am J Chin Med 39(05):879–887

    PubMed  Google Scholar 

  • Chiu (1995) Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 6(4):349–362

    CAS  PubMed  Google Scholar 

  • Deng M, Zhao JY, Tu PF, Jiang Y, Li ZB, Wang YH (2004) Echinacoside rescues the SHSY5Y neuronal cells from TNFalpha-induced apoptosis. Eur J Pharmacol 505(1–3):11–18

    CAS  PubMed  Google Scholar 

  • Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608–614

    PubMed  PubMed Central  Google Scholar 

  • Guo H (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12(19):2519–2532

    CAS  PubMed  Google Scholar 

  • Gurney M, Pu H, Chiu A, Dal Canto M, Polchow C, Alexander D, Caliendo J, Hentati A, Kwon Y, Deng H et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264(5166):1772–1775

    CAS  PubMed  Google Scholar 

  • Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Prim 3(1):1–19

    Google Scholar 

  • Hayashi Y, Homma K, Ichijo H (2016) SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul 60:95–104

    CAS  PubMed  Google Scholar 

  • Hu H, Yang R, Jin G, Zhang X, Xia H, Xu Y (2016) Effect of astragaloside IV on neural stem cell transplantation in Alzheimer’s disease rat models. Evid Based Complement Alternat Med 2016:1–8

    Google Scholar 

  • Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    CAS  PubMed  Google Scholar 

  • Kuang R, Sun Y, Yuan W, Lei L, Zheng X (2009) Protective effects of echinacoside, one of the phenylethanoid glycosides, on H2O2-induced cytotoxicity in PC12 cells. Planta Med 75(14):1499–1504

  • Lewis K, Rasmussen A, Bennett W et al (2014) Microglia and motor neurons during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis: changes in arginase1 and inducible nitric oxide synthase. J Neuroinflammation 11:55

  • Li Z, Huinuan L, Long G, Jingwen G, Chi-Meng T (2016) Herba Cistanche (Rou Cong-Rong): one of the best pharmaceutical gifts of traditional Chinese medicine. Front Pharmacol 7:41

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wang X, Han C, Wang X, Xing G, Zhou L, Li G, Niu Y (2013) Astragaloside IV suppresses collagen production of activated hepatic stellate cells via oxidative stress-mediated p38 MAPK pathway. Free Radic Biol Med 60:168–176

    CAS  PubMed  Google Scholar 

  • Liu J, Lillo C, Jonsson PA, Velde CV, Cleveland DW (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron. 43(1):5–17

    CAS  PubMed  Google Scholar 

  • Liu J, Lingling Y, Yanhong D, Bo Z, Xueqin M (2018) Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules 23(5):1213

    PubMed Central  Google Scholar 

  • Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008) Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3(6):649–657

    CAS  PubMed  Google Scholar 

  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan W, Su X, Bao J, Wang J, Zhou H (2013) Open randomized clinical trial on JWSJZ decoction for the treatment of ALS patients. Evid Based Complement Alternat Med 2013(3):347525

    PubMed  PubMed Central  Google Scholar 

  • Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci 9:68

  • Qin Q, Niu J, Wang Z, Xu W, Qiao Z, Gu Y (2012) Astragalus membranaceus inhibits inflammation via phospho-P38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-ΰB pathways in advanced glycation end product-stimulated macrophages. Int J Mol Sci 13(7):8379–8387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    CAS  PubMed  Google Scholar 

  • Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ (2009) Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. Neuroreport. 20(16):1450–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tortarolo M, Crossthwaite AJ, Conforti L, Spencer JP, Williams RJ, Bendotti C, Rattray M (2003) Expression of SOD1 G93A or wild-type SOD1 in primary cultures of astrocytes down-regulates the glutamate transporter GLT-1: lack of involvement of oxidative stress&nbsp. J Neurochem 88(2):481–493

    Google Scholar 

  • Trotti D, Rolfs A, Danbolt NC, Brown RH, Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2(5):427–33

  • Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85(1):94–134

    CAS  PubMed  Google Scholar 

  • Valdmanis PN, Belzil VV, Lee J, Dion PA, Rouleau GA (2009) A mutation that creates a pseudoexon in SOD1 causes familial ALS. Ann Hum Genet 73(Pt 6):652–657

    CAS  PubMed  Google Scholar 

  • Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28(1):251–274

    CAS  PubMed  Google Scholar 

  • Wang N, Shaozhen J, Hao Z, Shanshan M, Lumin Q, Xianglan J (2017) Herba Cistanches: anti-aging. Aging Dis 8(6):740

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Y, Hu J-P, Yu S, Li B-K, Cui Y et al (2016) Astragaloside IV, a natural PPARγ agonist, reduces Aβ production in Alzheimer’s disease through inhibition of BACE1. Mol Neurobiol 54(4):2939–2949

    PubMed  Google Scholar 

  • Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS, Appel SH (2007) Mutant SOD1 G93A microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102(6):2008–2019

    CAS  PubMed  Google Scholar 

  • Xue B, Huang J, Ma B et al (2019) Astragaloside IV protects primary cerebral cortical neurons from oxygen and glucose deprivation/reoxygenation by activating the PKA/CREB pathway

  • You Y, Yan L, Huang L, Huang S, Zhao Z (2010) Anti-apoptosis effect of astragaloside IV on Alzheimer’s disease rat model via enhancing the expression of Bcl-2 and Bcl-X1. Scand J Lab Anim Sci 37(2):75–82

    Google Scholar 

  • Yu W, Lv Z, Zhang L, Gao Z, Chen X, Yang X, Zhong M (2018) Astragaloside IV reduces the hypoxia-induced injury in PC-12 cells by inhibiting expression of miR-124. Biomed Pharmacother 106:419–425

    CAS  PubMed  Google Scholar 

  • Zhang L, Liu Q, Lu L, Zhao X, Gao X, Wang Y (2011) Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1? Accumulation via phosphatidylinositol 3-kinase/Akt pathway. J Pharmacol Exp Ther 338(2):485–491

    CAS  PubMed  Google Scholar 

  • Zhang ZG, Wu L, Wang J-l, Yang J-d, Zhang J, Zhang J et al (2012) Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 364(1–2):209–216

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang Z, Xiang J, Cai M, Yu Z, Li X, Wu T, Cai D (2017) Neuroprotective effects of echinacoside on regulating the stress-active p38MAPK and NF-κB p52 signals in the mice model of Parkinson’s disease. Neurochem Res 42(4):975–985

    CAS  PubMed  Google Scholar 

  • Zhao W, Beers DR, Henkel JS, Zhang W, Urushitani M, Julien JP, Appel SH (2010a) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia. 58(2):231–243

    PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Gao J, Li W, Cai D (2010b) Neurotrophic and neurorescue effects of echinacoside in the subacute MPTP mouse model of Parkinson’s disease. Brain Res 1346:224–236

    CAS  PubMed  Google Scholar 

  • Zhao Q, Yang X, Cai D, Ye L, Hou Y, Zhang L, Cheng J, Shen Y, Wang K, Bai Y (2016) Echinacoside protects against MPP+-induced neuronal apoptosis via ROS/ATF3/CHOP pathway regulation. Neurosci Bull 32(4):349–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M , Ling S, Chen H, Pan R (2017) Inhibition of notch signaling pathways contribute to neuroprotection effect by the combination of astragalus membranaceus and ligustrazine in rat model after thrombolysis of cerebral ischaemia. In: IEEE International Conference on Bioinformatics & Biomedicine. IEEE Computer Society, Kansas City

  • Zhu M, Lu C, Li W (2013) Transient exposure to echinacoside is sufficient to activate Trk signaling and protect neuronal cells from rotenone. J Neurochem 124(4):571–580

    CAS  PubMed  Google Scholar 

  • Zhu S, Qi L, Rui YF, Li RX, He XP, Xie ZP (2008) Astragaloside IV inhibits spontaneous synaptic transmission and synchronized Ca2+ oscillations on hippocampal neurons1. Acta Pharmacol Sin 29:57–64

    PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Men Yuqin from Tufts University who kindly gave me technical assistants and thank Tufts imaging core for providing the confocal microscope.

Funding

This work was supported by the Natural Science Foundation of China (No. 81774250), NATCM TCM Inheritance and Innovation “Hundred-Thousand-Ten Thousand” Talents Project (QiHuang Scholar)—National TCM Leading Personnel Support Program (NATCM Personnel and Education Department [2018] No. 12), and the International Science and Technology Cooperation Program of China (No. 2015DFA31130).

Author information

Authors and Affiliations

Authors

Contributions

YT, XL, and YZ conceived and designed the research. YT, SJ, and VP conducted the experiments. YT analyzed the data. YT wrote the manuscript. All authors read and approved the manuscript and all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Yunling Zhang.

Ethics declarations

The treatment and cares that were performed on animals in all procedures were strictly followed from the NIH Guide for the Care as well as Use of Laboratory Animals and the Guidelines for the Use of Animals in Neuroscience Research. Animal protocols used in this study have been approved by Tufts University IACUC committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PZFX 72 kb)

ESM 2

(PZFX 121 kb)

ESM 3

(PZFX 106 kb)

ESM 4

(PZFX 30 kb)

ESM 5

(PZFX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Jin, S., Promes, V. et al. Astragaloside IV and echinacoside benefit neuronal properties via direct effects and through upregulation of SOD1 astrocyte function in vitro. Naunyn-Schmiedeberg's Arch Pharmacol 394, 1019–1029 (2021). https://doi.org/10.1007/s00210-020-02022-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-02022-w

Keywords

Navigation