Skip to main content
Log in

Effects of resveratrol on alterations in cerebrum energy metabolism caused by metabolites accumulated in type I citrullinemia in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We investigated the in vitro effects of citrulline (0.1, 2.5 and 5.0 mM) and ammonia (0.01, 0.1 and 1.0 mM), and the influence of resveratrol (0.01 mM, 0.1 mM and 0.5 mM) on pyruvate kinase, citrate synthase, succinate dehydrogenase (SDH), complex II, and cytochrome c oxidase activities in cerebral cortex, cerebellum and hippocampus homogenates of 60-day-old male Wistar rats. Results showed that 2.5 and 5.0 mM citrulline decreased pyruvate kinase activity in cerebral cortex and, at a concentration of 5.0 mM, increased its activity in hippocampus. Additionally, 5.0 mM citrulline increased citrate synthase activity in the cerebellum of rats. Citrulline (5.0 mM) reduced complex II and cytochrome c oxidase activities in cerebral cortex and hippocampus. With regard to ammonia, at 0.1 and 1.0 mM, decreased complex II activity in cerebral cortex and at 1.0 mM decreased its activity in cerebellum and hippocampus. Ammonia (1.0 mM) also decreased cytochrome c oxidase activity in cerebral cortex and cerebellum of rats. Resveratrol was able to prevent most of the alterations caused by these metabolites in the biomarkers of energy metabolism measured in the cerebrum of rats. Data suggest that these alterations in energy metabolism, caused by citrulline and ammonia, are probably mediated by the generation of free radicals, which can in turn be scavenged by resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achkar MT, Novaes GM, José M, Silva D (2013) Importância na dieta e na conservação de alimentos. Rev da Univ Val do Rio Verde 11:398–406

    Google Scholar 

  • Atamna H, Frey WH (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7:297–310

    CAS  PubMed  Google Scholar 

  • Barbosa JKBF, Costa NMB, Alfenas RCG, Paula SO, Minim VPR, Bressan J (2010) Estresse oxidativo : conceito, implicações e fatores modulatórios. Rev Nutri 23:629–643

    CAS  Google Scholar 

  • Bastianetto S, Ménard C, Quirion R (2015) Neuroprotective action of resveratrol. Biochim Biophys Acta 1852:1195–1201

    CAS  PubMed  Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 2:119–130

    Google Scholar 

  • Bellaver B, Bobermin LD, Souza DG, Rodrigues MD, de Assis AM, Wajner M, Gonçalves CA, Souza DO, Quincozes-Santos A (2016) Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta 1862:1827–1838

    CAS  PubMed  Google Scholar 

  • Bobermin LD, Quincozes-Santos A, Guerra MC, Leite MC, Souza DO, Gonçalves C-A, Gottfried C (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS One 7:1–12

    Google Scholar 

  • Breningstall GN (1986) Neurologic syndromes in hypemmmonemic disorders. Pediatr Neurol 2:253–262

    CAS  PubMed  Google Scholar 

  • Brusilow SW, Horwich AL (2001) Urea cycle enzymes. In: the metabolic and molecular basis of inherited disease. 8a. McGraw-hill, New York, pp 1909–1963

  • Charles A, Meyer A, Dal-Ros S, Auger C, Keller N, Geny B, Ramamoorthy TG, Zoll J, Metzger D, Schini-kerth V, Geny B (2013) Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production. Exp Physiol 2:536–545

    Google Scholar 

  • Clancy RR, Chung HJ (1991) EEG changes during recovery from acute severe neonatal citrullinemia. Electroencephalogr Clin Neurophysiol 78:222–227

    CAS  PubMed  Google Scholar 

  • Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C (2019) Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol Neurobiol 56:1502–1516

    CAS  PubMed  Google Scholar 

  • Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104:7217–7222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degáspari CH, Waszczynskyj N (2004) Propriedades antioxidantes de compostos fenólicos. Visão Acadêmica 5:33–40

    Google Scholar 

  • Delwing D, Tagliari B, Chiarani F, Wannmacher C, Wajner M, ATs W (2006) Alpha-tocopherol and ascorbic acid administration prevents the impairment of brain energy metabolism of hyperargininemic rats. Cell Mol Neurobiol 26:177–189

    CAS  PubMed  Google Scholar 

  • Delwing-de Lima D, Fröhlich M, Dalmedico L, Aurélio JGM, Delwing-Dal Magro D, Pereira EM, Wyse ATS (2017) Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants. Metab Brain Dis 32:359–368

    CAS  PubMed  Google Scholar 

  • Dos Santos AQ, Nardin P, Funchal C, Vieira de Almeida LM, Jacques-Silva MC, Wofchuk ST, Gonçalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167

    PubMed  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    CAS  PubMed  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    CAS  PubMed  Google Scholar 

  • Frémont L (2000) Biological effects of resveratrol. Life Sci 66:664–673

    Google Scholar 

  • Gao HZ, Kobayashi K, Tabata A, Tsuge H, Iijima M, Yasuda T, Kalkanoglu HS, Dursun A, Tokatli A, Coskun T, Trefz FK, Skladal D, Mandel H, Seidel J, Kodama S, Shirane S, Ichida T, Makino S, Yoshino M, Kang JH, Mizuguchi M, Barshop BA, Fuchinoue S, Seneca S, Zeesman S, Knerr I, Rodés M, Wasant P, Yoshida I, De Meirleir L, Abdul Jalil M, Begum L, Horiuchi M, Katunuma N, Nakagawa S, Saheki T (2003) Identification of 16 novel mutations in the argininosuccinate synthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients. Hum Mutat 22:24–34

    CAS  PubMed  Google Scholar 

  • Gerszon J, Rodacka A, Puchała M (2014) Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. AdvCell Biol 4:97–117

    Google Scholar 

  • Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta (BBA)-bioenergetics 1604:159–169

    CAS  Google Scholar 

  • Ivanovski I, Ješić M, Ivanovski A, Garavelli L, Ivanovski P (2017) Metabolically based liver damage pathophysiology in patients with urea cycle disorders - a new hypothesis. World J Gastroenterol 23:7930–7938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosenko E, Kaminsky Y, Grau E, Minana M, Marcaida G, Grisolfa S, Felipo V (1994) Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na + , K + -ATPase. J Neurochem 63:2172–2178

    CAS  PubMed  Google Scholar 

  • Kumar P, Padi SSV, Naidu PS, Kumar A (2006) Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 17:485–492

    CAS  PubMed  Google Scholar 

  • Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrought NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maestri NE, Clissold DB, Brusilow SW (1995) Long-term survival of patients with argininosuccinate synthetase deficiency. J Pediatr 127:929–935

    CAS  PubMed  Google Scholar 

  • Mattevi A, Bolognesi M, Valentini G (1996) The allosteric regulation of pyruvate kinase. Fed Eur Biochem Soc 389:15–19

    CAS  Google Scholar 

  • Nelson DL, Cox MM (2011) Princípios de bioquímica de Lehninger. Artmed, Porto Alegre

    Google Scholar 

  • Öztürk Z, Hirfanoǧlu T, Inci A, Okur I, Koç E, Tümer L, Arhan E, Aydin K, Serdaroglu A (2018) Citrullinemia with an atypical presentation: paroxysmal hypoventilation attacks. J Pediatr Neurosci 13:276–278

    PubMed  PubMed Central  Google Scholar 

  • Pervaiz S (2003) Resveratrol : from grapevines to mammalian biology. FASEB J 17:1975–1985

    CAS  PubMed  Google Scholar 

  • Prestes CC, Sgaravatti AM, Pederzolli CD, Sgarbi MB, Zorzi GK, Wannmacher CMD, Wajner M, Wyse ATS, Dutra-filho CS (2006) Citrulline and ammonia accumulating in citrullinemia reduces antioxidant capacity of rat brain in vitro. Metab Brain Dis 21:63–74

    CAS  PubMed  Google Scholar 

  • Quinonez SC, Thoene JG (2004) Citrullinemia type I. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. Gene Reviews, Seattle (WA): University of Washington, Seattle, pp 1993–2020

  • Rao KVR, Mawal YR, Qureshi IA (1997) Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice : role of acetyl- l -carnitine in restoring the ammonia-induced cerebral energy depletion 1. Neurosci Lett 224:83–86

    CAS  PubMed  Google Scholar 

  • Ratnakumari L, Qureshi IA, Butterworth R (1992) Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates os energy metabolism in spf mice. Biochem Biophys Res Commun 184:746–751

    CAS  PubMed  Google Scholar 

  • Rege S, Geetha T, Broderick T, Babu J (2015) Resveratrol protects β amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res 12(2):147–156

    CAS  PubMed  Google Scholar 

  • Ruder J, Legacy J, Russo G, Davis R (2014) Neonatal citrullinemia: novel, reversible neuroimaging findings correlated with ammonia level changes. Pediatr Neurol 51:553–556

    PubMed  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    CAS  PubMed  Google Scholar 

  • Sasso S, Cruz IR, Lorenzini MS, Delwing-Dal Magro D, Brueckheimer MB, Maia TP, Sala GAN, Mews MHR, Delwing-de Lima D (2018) Antioxidant e effects on the intracerebroventricular galactose damage in rats. Pathol Res Pract 214(10):1596–1605

    CAS  PubMed  Google Scholar 

  • Shepherd D, Garland P (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverthorn D (2003) Fisiologia Humana: uma abordagem integrada. Manole, São Paulo

    Google Scholar 

  • Srere P (1969) Citrate synthase. Methods Enzym 3:3–11

    Google Scholar 

  • Tetsuo A, Shohei F, Hiroshi S, Katsumi I, Toshinari S, Naohiro W, Keiko K, Takeyour S, Satoshi T (2003) Living-related liver transplantation for citrullinemia: different features and clinical problems between classical types (CTLN1) and adult-onset type (CTLN2) citrullinemia. Japanese J Transplant 38:143–147

    Google Scholar 

  • Valenti D, de Bari L, de Rasmo D, Signorile A, Henrion-Caude A, Contestabile A, Vacca RA (2016) The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta 1862:1093–1104

    CAS  PubMed  Google Scholar 

  • Zamin LL, Dillenburg-Pilla P, Argenta-Comiran R, Horn AP, Simão F, Nassif M, Gerhard D, Frozza RL, Salbego C (2006) Protective effect of resveratrol against oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of PI3-K pathway. Neurobiol Dis 24:170–182

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Universidade da Região de Joinville (UNIVILLE).

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All data were generated in-house, and no paper mill was used. K.L.V.: investigation, writing—original draft, writing—review and editing, visualization; T.P.M.: investigation, writing—original draft, writing—review and editing, visualization; L. D.: investigation; A.B.L.: investigation; L.C.P.: investigation; D.D.-D.M.: conceptualization, methodology, formal analysis, writing—review and editing, visualization; D.D.-deL.: conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing, visualization, supervision. We are grateful for the collaboration of the research fellow (PIPE/Article 170) Ramon Fernandes Olm (Regional University of Blumenau).

Corresponding author

Correspondence to Daniela Delwing-de Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincenzi, K.L., Maia, T.P., Delmônego, L. et al. Effects of resveratrol on alterations in cerebrum energy metabolism caused by metabolites accumulated in type I citrullinemia in rats. Naunyn-Schmiedeberg's Arch Pharmacol 394, 873–884 (2021). https://doi.org/10.1007/s00210-020-02017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-02017-7

Keywords

Navigation