The effects of chrysin and naringin on cyclophosphamide-induced erythrocyte damage in rats: biochemical evaluation of some enzyme activities in vivo and in vitro

Abstract

In recent years, there have been efforts to develop therapeutic agents that target metabolic enzyme systems in addition to existing treatment in possible cancer treatments. Cyclophosphamide (CYP) is an anticancer drug commonly used in various cancer treatments. Chrysin (CH) and naringin (NR) are natural flavonoids that possess many medicinal and pharmacological properties. In the present study, we aimed to investigate the effect of CH and NR against CYP-induced toxicity on some metabolic enzyme activities. For this purpose, 56 male rats were randomly divided into 8 groups in our in vivo study. The rats were pretreated with CH (25 and 50 mg/kg bw) and NR (50 and 100 mg/kg bw) for 7 days before administering a single dose of CYP (200 mg/kg bw) on the seventh day. According to the in vivo results of our study, it was observed that CH and NR regulated abnormal changes in CYP-induced enzyme activities. In addition, our in vitro study, G6PD enzyme was purified from rat erythrocyte using affinity chromatography. The effects of CH, NR, and CYP were investigated on the purified enzyme. It was determined that CH increased the enzyme activity, CYP ineffective on the enzyme activity, whereas NR inhibited the enzyme activity noncompetitively.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adem S, Ciftci M (2016) Purification and biochemical characterization of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase from rat lung and inhibition effects of some antibiotics. J Enzyme Inhib Med Chem 6366:1–7. https://doi.org/10.3109/14756366.2015.1132711

    CAS  Article  Google Scholar 

  2. Akkemik E, Şentürk M, Özgerİş FB et al (2011) In vitro eff ects of some drugs on human erythrocyte glutathione reductase. 41:235–241. https://doi.org/10.3906/sag-1002-4

  3. Arnér ESJ, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16:420–426. https://doi.org/10.1016/j.semcancer.2006.10.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22:343–352. https://doi.org/10.1002/cbf.1149

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214. https://doi.org/10.1515/BC.2009.033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bayindir S, Temel Y, Ayna A, Ciftci M (2018a) The synthesis of N-benzoylindoles as inhibitors of rat erythrocyte glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. J Biochem Mol Toxicol 32:1–9. https://doi.org/10.1002/jbt.22193

    CAS  Article  Google Scholar 

  7. Bayindir S, Ayna A, Temel Y, Çiftci M (2018b) The synthesis of new oxindoles as analogs of natural product 3,3-bis(indolyl)oxindole and in vitro evaluation of the enzyme activity of G6PD and 6PGD. Turkish J Chem 42. https://doi.org/10.3906/kim-1706-51

  8. Bayramoğlu Akkoyun M, Bengü AŞ, Temel Y, Akkoyun HT, Ekin S, Ciftci M (2018) The effect of astaxanthin and cadmium on rat erythrocyte G6PD, 6PGD, GR, and TrxR enzymes activities in vivo and on rat erythrocyte 6PGD enzyme activity in vitro. J Biochem Mol Toxicol 32:1–5. https://doi.org/10.1002/jbt.22170

    CAS  Article  Google Scholar 

  9. Beydemir S, Gülçin I, Küfrevioğlu OI, Ciftçi M (2003) Glucose 6-phosphate dehydrogenase: in vitro and in vivo effects of dantrolene sodium. Pol J Pharmacol 55:787–792

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Beydemir GI, Hisar O et al (2005) Effect of melatonin on glueose-6-phosphate dehydrogenase from rainbow trout (Oncorhynchus my kiss) erythrocytes in vitro and in vivo. J Appl Anim Res 28:65–68. https://doi.org/10.1080/09712119.2005.9706791

    CAS  Article  Google Scholar 

  11. Branco V, Godinho-santos A, Gonçalves J et al (2014) Free radical biology and medicine mitochondrial thioredoxin reductase inhibition, selenium status , and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic Biol Med 73:95–105. https://doi.org/10.1016/j.freeradbiomed.2014.04.030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S (2018) Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res 25:20968–20984. https://doi.org/10.1007/s11356-018-2242-5

    CAS  Article  Google Scholar 

  13. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. https://doi.org/10.1038/nrc2981

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Ceylan M, Kocyigit UM, Usta NC, Gürbüzlü B, Temel Y, Alwasel SH, Gülçin İ (2016) Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives. J Biochem Mol Toxicol 31. https://doi.org/10.1002/jbt.21872

  15. Reviews B, Deluca VA (1975) Fibre-optic endoscopy. 310–311

  16. Eldutar E, Kandemir FM, Kucukler S, Caglayan C (2017) Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: an experimental and biochemical study. J Biochem Mol Toxicol 31:4–9. https://doi.org/10.1002/jbt.21960

    CAS  Article  Google Scholar 

  17. Gülçin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391. https://doi.org/10.1007/s00204-011-0774-2

    CAS  Article  PubMed  Google Scholar 

  18. Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview

  19. Habibi E, Shokrzadeh M, Chabra A, Naghshvar F, Keshavarz-Maleki R, Ahmadi A (2015) Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice. Pharm Biol 53:10–15. https://doi.org/10.3109/13880209.2014.908399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Ibrahim MA, Ghazy AHM, Salem AMH, Ghazy MA, Abdel-Monsef MM (2015) Biochemical characterization of buffalo liver glucose-6-phosphate dehydrogenase isoforms. Protein J 34:193–204. https://doi.org/10.1007/s10930-015-9615-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Jakoby B (1974) A novel strate. 249:7140–7149

  22. Kandemir FM, Kucukler S, Caglayan C et al (2017) Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 41. https://doi.org/10.1111/jfbc.12398

  23. Kern JC, Kehrer JP (2002) Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis. Chem Biol Interact 139:79–95. https://doi.org/10.1016/S0009-2797(01)00295-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Kocyigit UM, Aslan ON, Gulcin I, Temel Y, Ceylan M (2016) Synthesis and carbonic anhydrase inhibition of novel 2-(4-(aryl)thiazole-2-yl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Arch Pharm (Weinheim) 349:955–963. https://doi.org/10.1002/ardp.201600092

    CAS  Article  Google Scholar 

  25. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J (2020) Flavonoids as anticancer agents. Nutrients 12:1–25. https://doi.org/10.3390/nu12020457

    CAS  Article  Google Scholar 

  26. Köse LP, Gülçin I, Gören AC, Namiesnik J, Martinez-Ayala AL, Gorinstein S (2015) LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind Crop Prod 74:712–721. https://doi.org/10.1016/j.indcrop.2015.05.034

    CAS  Article  Google Scholar 

  27. Liao S, Williams-Ashman HG (1964) Glutathione reductase. Enzyme 13:888–894. https://doi.org/10.1007/978-3-662-11689-0_30

    Article  Google Scholar 

  28. Lin R, Elf S, Shan C, et al (2015) 6-Phosphogluconate dehydrogenase links oxidative PPP , lipogenesis and tumour growth by inhibiting LKB1 – AMPK signalling. 17:. https://doi.org/10.1038/ncb3255

  29. Motawi TMK, Sadik NAH, Refaat A (2010) Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: an experimental study on rat myocardium , testicles and urinary bladder. Food Chem Toxicol 48:2326–2336. https://doi.org/10.1016/j.fct.2010.05.067

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Nathan C, Ding A (2010) Snapshot: reactive oxygen intermediates (ROI). Cell 140:8–10. https://doi.org/10.1016/j.cell.2010.03.008

    Article  Google Scholar 

  31. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-Ul-Haq, IqraYasmin, Shahbaz M, Qaisrani TB, Shah ZA, Plygun S, Heydari M (2019) Chrysin: pharmacological and therapeutic properties. Life Sci 235:116797. https://doi.org/10.1016/j.lfs.2019.116797

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Özmen I, Küfrevioǧlu ÖI (2004) Effects of antiemetic drugs on glucose 6-phosphate dehydrogenase and some antioxidant enzymes. Pharmacol Res 50:499–504. https://doi.org/10.1016/j.phrs.2004.05.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Pereira RMS, Andrades NED, Paulino N, Sawaya A, Eberlin M, Marcucci M, Favero G, Novak E, Bydlowski S (2007) Synthesis and characterization of a metal complex containing naringin and cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 12:1352–1366. https://doi.org/10.3390/12071352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Pljesa-Ercegovac M, Savic-Radojevic A, Matic M, Coric V, Djukic T, Radic T, Simic T (2018) Glutathione transferases: potential targets to overcome chemoresistance in solid tumors. Int J Mol Sci 19. https://doi.org/10.3390/ijms19123785

  35. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534. https://doi.org/10.1002/med.10033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Rigobello MP, Scutari G, Boscolo R, Bindoli A (2002) Induction of mitochondrial permeability transition by auranofin, a gold(I)-phosphine derivative. Br J Pharmacol 136:1162–1168. https://doi.org/10.1038/sj.bjp.0704823

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Supuran CT, Maresca A, Greg F, Remko M (2013) Three new aromatic sulfonamide inhibitors of carbonic anhydrases I, II, IV and XII. 28:289–293. https://doi.org/10.3109/14756366.2011.649269

  38. Sze JH, Raninga PV, Nakamura K, Casey M, Khanna KK, Berners-Price SJ, di Trapani G, Tonissen KF (2020) Anticancer activity of a gold(I) phosphine thioredoxin reductase inhibitor in multiple myeloma. Redox Biol 28:101310. https://doi.org/10.1016/j.redox.2019.101310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Taşer P, Çİftcİ, M (2012) Purifi cation and characterization of glutathione reductase from turkey liver 36:546–553. https://doi.org/10.3906/vet-1103-5

  40. Taslimi P, Caglayan C, Gulcin İ (2017) The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes: an antidiabetic, anticholinergic, and antiepileptic study. J Biochem Mol Toxicol 31:1–7. https://doi.org/10.1002/jbt.21995

    CAS  Article  Google Scholar 

  41. Temel Y, Bayindir S (2019) The synthesis of thiosemicarbazone-based aza-ylides as inhibitors of rat erythrocyte glucose 6-phosphate dehydrogenase enzyme. J Inst Sci Technol 9:1503–1512. https://doi.org/10.21597/jist.518012

    Article  Google Scholar 

  42. Temel Y, Kocyigit UM (2017a) Purification of glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus) erythrocytes and inhibition effects of some metal ions on enzyme activity. J Biochem Mol Toxicol 31. https://doi.org/10.1002/jbt.21927

  43. Temel Y, Kocyigit UM (2017b) Purification of glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus) erythrocytes and inhibition effects of some metal ions on enzyme activity. https://doi.org/10.1002/jbt.21927

  44. Temel Y, Taysi MŞ (2018) The effect of mercury chloride and boric acid on rat erythrocyte enzymes. Biol Trace Elem Res 191:177–182. https://doi.org/10.1007/s12011-018-1601-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Temel Y, Kufrevioǧlu ÖI, Çiftci M (2017a) Investigation of the effects of purification and characterization of turkey (Meleagris gallopavo) liver mitochondrial thioredoxin reductase enzyme and some metal ions on enzyme activity. Turkish J Chem 41:48–60. https://doi.org/10.3906/kim-1603-135

    CAS  Article  Google Scholar 

  46. Temel Y, Bozkuş T, Karagözoğlu Y, Çİftcİ, M (2017b) Glutatyon Redüktaz ( GR ) Enziminin Japon Bıldırcın ( Coturnix coturnix japanica ) Eritrositlerinden Saflaştırılması ve Karakterizasyonu Purification and characterization of glutathion reductase enzyme from Japanese Quail (Coturnix coturnix japanica) Er. 7:143–150

  47. Temel Y, Bengü AŞ, Akkoyun HT, Akkoyun M, Ciftci M (2017c) Effect of astaxanthin and aluminum chloride on erythrocyte G6PD and 6PGD enzyme activities in vivo and on erythrocyte G6PD in vitro in rats. J Biochem Mol Toxicol 31. https://doi.org/10.1002/jbt.21954

  48. Temel Y, Ayna A, Hamdi Shafeeq I, Ciftci M (2018) In vitro effects of some antibiotics on glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus ) erythrocyte . Drug Chem Toxicol 0:1–5. https://doi.org/10.1080/01480545.2018.1481083, 43

  49. Topal F, Nar M, Gocer H, Kalin P, Kocyigit UM, Gülçin İ, Alwasel SH (2016) Antioxidant activity of taxifolin: an activity-structure relationship. J Enzyme Inhib Med Chem 31:674–683. https://doi.org/10.3109/14756366.2015.1057723

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Türkeş C, Demir Y, Beydemir Ş (2019) Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity. Appl Biochem Biotechnol 189:318–329. https://doi.org/10.1007/s12010-019-03009-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Urig S, Becker K (2006) On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin Cancer Biol 16:452–465. https://doi.org/10.1016/j.semcancer.2006.09.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Winterbourn CC (2019) Regulation of intracellular glutathione. Redox Biol 22:101086. https://doi.org/10.1016/j.redox.2018.101086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38:794–808. https://doi.org/10.1016/j.tips.2017.06.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang D, Liu Y, Luo Z, Chen Y, Xu A, Liang Y, Wu B, Tong X, Liu X, Shen H, Liu L, Wei Y, Zhou H, Liu Y, Zhou F (2020) The novel thioredoxin reductase inhibitor A-Z2 triggers intrinsic apoptosis and shows efficacy in the treatment of acute myeloid leukemia. Free Radic Biol Med 146:275–286. https://doi.org/10.1016/j.freeradbiomed.2019.11.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li R, Xu M, Yan G, Yin Z, Zhang S, Liu S, Shan C (2017) Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and. Lung Cancer 8:1–11. https://doi.org/10.3389/fphar.2017.00421

    CAS  Article  Google Scholar 

  56. Zhou J, Xia L, Zhang Y (2019) Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathol Res Pract 215:152707. https://doi.org/10.1016/j.prp.2019.152707

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Zhu S, He L, Zhang F, Li M, Jiao S, Li Y, Chen M, Zhao XE, Wang H (2016) Fluorimetric evaluation of glutathione reductase activity and its inhibitors using carbon quantum dots. Talanta 161:769–774. https://doi.org/10.1016/j.talanta.2016.09.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Bingol University, Turkey.

Funding

This study was supported by the Scientific Research Projects Coordination Unit of Bingol University (Project number BAP-SSHMYO.2016.00.001).

Author information

Affiliations

Authors

Contributions

YT and CC conceived and designed the research. BMA and YT conducted the biochemical analyses. YT, CC, FMK, and MC analyzed the data. YT and CC wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yusuf Temel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Chrysin regulated abnormal increases and decreases in CYP-induced metabolic enzyme activities.

• Naringin regulated abnormal increases and decreases in CYP-induced metabolic enzyme activities.

• G6PD enzyme purified from rat erythrocyte using 2′,5-ADP Sepharose 4B affinity gel.

• Chrysin increased the G6PD enzyme activity in vitro.

• Naringin inhibited the G6PD enzyme activity noncompetitively.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Temel, Y., Çağlayan, C., Ahmed, B.M. et al. The effects of chrysin and naringin on cyclophosphamide-induced erythrocyte damage in rats: biochemical evaluation of some enzyme activities in vivo and in vitro. Naunyn-Schmiedeberg's Arch Pharmacol (2020). https://doi.org/10.1007/s00210-020-01987-y

Download citation

Keywords

  • Cyclophosphamide
  • Chrysin
  • Naringin
  • G6PD
  • 6PGD
  • GR
  • TrxR