Skip to main content

Advertisement

Log in

GLUT1 participates in tamoxifen resistance in breast cancer cells through autophagy regulation

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Tamoxifen is an estrogen modulator widely used in the treatment of patients with ESR/ER-positive breast cancer; however, resistance limits its clinical application. Autophagy alterations have recently been suggested as a new mechanism for tamoxifen resistance. Glucose transporter 1 (GLUT1) has been reported to be associated with the development and metastasis of breast cancer, but the relationship among GLUT1, autophagy, and endocrine resistance remains unclear. Our present study found that GLUT1 expression and autophagy flux were upregulated in the tamoxifen-resistant breast cancer cell line MCF-7/TAMR-1 and that knockdown of GLUT1 promoted sensitization to tamoxifen. Moreover, knockdown of GLUT1 significantly decreased the enhancement of autophagy flux in tamoxifen-resistant cell lines. Furthermore, inhibiting autophagy in tamoxifen-resistant cells resulted in sensitization to tamoxifen. We conclude that GLUT1 contributes to tamoxifen resistance in breast cancer and that tamoxifen-resistant cells become resensitized to tamoxifen after GLUT1 silencing. These findings suggest GLUT1 as a new factor clinically associated with resistance to tamoxifen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Baf-A1:

Bafilomycin A 1

CCK-8:

Cell counting Kit-8

DAB:

Diaminobenzidine

DEGs:

Differentially expressed genes

DFS:

Disease-free survival

DMEM:

Dulbecco’s modified Eagle’s medium

ER/ESR:

Estrogen receptor

FBS:

Fetal bovine serum

FOXO:

Forkhead box O

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GEO:

Gene expression omnibus

GLUT1:

Glucose transporter 1

GO:

Gene Ontology

HRP:

Horseradish peroxidase

IC50:

Inhibitory concentration

KEGG:

Kyoto Encyclopedia of Genes and Genomes

PPI:

Protein-protein interaction

PR:

Progesterone receptor

SEM:

Structural equation modeling

SERMs:

Selective ER modulators

SD:

Standard deviation

siRNA:

Small interfering RNA

siGLUT1:

Small interfering GLUT1

TAM:

Tamoxifen

4OH-T:

4-Hydroxy tamoxifen

References

  • Kwong D, Davies C, Godwin J et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784

    Article  Google Scholar 

  • Lee MH, Koh D, Na H, Ka NL, Kim S, Kim HJ, et al. (2017) MTA1 is a novel regulator of autophagy that induces tamoxifen resistance in breast cancer cells. Autophagy

  • Wood AJJ, Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators — mechanisms of action and application to clinical practice. https://doi.org/10.1056/nejmra022219

  • Viedma-Rodríguezet R et al (2014) Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep 32:3–15. https://doi.org/10.3892/or.2014.3190

    Article  CAS  Google Scholar 

  • Das CK, Mandal M, Kögel D (2018) Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev 37(5):1–18

    Google Scholar 

  • Samaddar JS, Gaddy VT, Duplantier J, Thandavan SP, Shah M, Smith MJ et al (2009) A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol Cancer Ther 7(3):2977–2987

    Google Scholar 

  • Nagelkerke A, Sieuwerts AM, Bussink J, Sweep FCGJ, Look MP, Foekens JA, Martens JWM, Span PN (2014) LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy. Endocr Relat Cancer 21(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Cook KL, Shajahan AN, Wärri A, Jin L, Hilakiviclarke LA, Clarke R (2012) Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Autophagy 72(12):3337–3349

    CAS  Google Scholar 

  • Qadir MA, Kwok B, Dragowska WH, To KH, le D, Bally MB, Gorski SM (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112(3):389–403

    Article  CAS  PubMed  Google Scholar 

  • None (2016) Correction: hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in er + breast cancer. Clin Cancer Res 22(11):2825–2825

    Article  Google Scholar 

  • Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N et al (2014) Crystal structure of the human glucose transporter glut1. Nature 510(7503):121–125

    Article  CAS  PubMed  Google Scholar 

  • Haber RS, Rathan A, Weiser KR et al (2015) GLUT1 glucose transporter expression in colorectal carcinoma. Cancer 83(1):34–40

    Article  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, et al (2006) Glycolysis inhibition for anticancer treatment. 25(34):4633-4646

  • Wang T, Ning K, Lu TX, Hua D (2016) Elevated expression of trpc5 and glut1 is associated with chemoresistance in colorectal cancer. Oncol Reports

  • Li P, Yang X, Cheng Y, Zhang X, Yang C, Deng X, Li P, Tao J, Yang H, Wei J, Tang J, Yuan W, Lu Q, Xu X, Gu M (2017) MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cell Physiol Biochem 41:921–932. https://doi.org/10.1159/000460505

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Ming J, Zhou Y et al (2016) Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol 77(5):963–972

    Article  CAS  PubMed  Google Scholar 

  • Iitaka M, Katayama S (2000) [Insulin resistance in pituitary, thyroid, and adrenal diseases]. Nihon Rinsho Japanese Journal of. Clin Med 58(2):451

    CAS  Google Scholar 

  • Alò PL, Visca P, Botti C, Galati GM, Sebastiani V, Andreano T, di Tondo U, Pizer ES (2001) Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. Am J Clin Pathol 116(1):129–134

    Article  PubMed  Google Scholar 

  • Grover-Mckay M, Walsh SA, Seftor EA et al (1998) Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res 4(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R (2015) Glut1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15(6B):2895

    Google Scholar 

  • Yan SX, Luo XM, Zhou SH, Bao YY, Fan J, Lu ZJ, Liao XB, Huang YP, Wu TT, Wang QY (2013) Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci 10(10):1375–1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Abouzeid AH, Patel NR, Rachman IM, Senn S, Torchilin VP (2013) Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target 21(10):994–1000

    Article  CAS  PubMed  Google Scholar 

  • Wang (2013) Inhibition of glucose transporter 1 (glut1) chemosensitized head and neck cancer cells to cisplatin. Technol Cancer Res Treatment

  • Chan DA, Sutphin PD, Nguyen P et al (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3(94):94–94

    Article  Google Scholar 

  • Shimanishi M, Ogi K, Sogabe Y, Kaneko T, Dehari H, Miyazaki A, Hiratsuka H (2013) Silencing of GLUT-1 inhibits sensitization of oral cancer cells to cisplatin during hypoxia. J Oral Pathol Med 42(5):382–388

    Article  CAS  PubMed  Google Scholar 

  • Cook KL, Clarke PAG, Parmar J, Hu R, Schwartz-Roberts JL, Abu-Asab M, Wärri A, Baumann WT, Clarke R (2014) Knockdown of estrogen receptor-? induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. FASEB J 28(9):3891–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh JY, Kuo WW, Lai YP et al (2015) 17β-Estradiol and/or estrogen receptor ? Attenuate the autophagic and apoptotic effects induced by prolonged hypoxia through HIF-1a-mediated BNIP3 and IGFBP-3 signaling blockage. Cell Physiol Biochem 36(1):274–284

    Article  CAS  PubMed  Google Scholar 

  • Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, Slater G, Weiss A, Burstein DE (1998) GLUT1 glucose transporter expression in colorectal carcinoma : a marker for poor prognosis. Cancer 83(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Kawamura T, Kusakabe T, Sugino T et al (2011) Expression of glucose transporter-1 in human gastric carcinoma : association with tumor aggressiveness, metastasis, and patient survival. Cancer 92(3):634–641

    Article  Google Scholar 

  • Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT (1997) Overexpression of glut1 and glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 80(6):1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Medina RA, Meneses AM, Vera JC, Guzman C, Nualart F, Rodriguez F, de los Angeles Garcia M, Kato S, Espinoza N, Monso C, Carvajal A, Pinto M, Owen GI (2004) Differential regulation of glucose transporter expression by estrogen and progesterone in Ishikawa endometrial cancer cells. J Endocrinol 182(3):467–478

    Article  CAS  PubMed  Google Scholar 

  • Das CK, Parekh A, Parida PK, Bhutia SK, Mandal M (2019) Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer. Biochim Biophys Acta, Mol Cell Res 1866:1004–1018. https://doi.org/10.1016/j.bbamcr

    Article  CAS  Google Scholar 

  • Osborne CK, Neven P, Dirix LY, Mackey JR, Robert J, Underhill C, Schiff R, Gutierrez C, Migliaccio I, Anagnostou VK, Rimm DL, Magill P, Sellers M (2011) Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res 17(5):1147–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munster PN, Thurn KT, Thomas S et al (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Breast Dis Year Book Quarterly 104(12):1828–1835

    CAS  Google Scholar 

  • Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X (2012) Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death[J]. Proc Natl Acad Sci 109(17):6561–6565

    Article  CAS  PubMed  Google Scholar 

  • Dragowska WH, Weppler SA, Wang JC, Wong LY, Kapanen AI, Rawji JS, Warburton C, Qadir MA, Donohue E, Roberge M, Gorski SM, Gelmon KA, Bally MB (2013) Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS ONE 8:e76503. https://doi.org/10.1371/journal.pone.0076503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Oncobiology Key Lab of the Heilongjiang Province Common Institution of Higher Learning.

Funding

The study was supported by the grants from the National Natural Science Foundation of China (81730074).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: QZ, MS. Development of methodology: MX, SZ, and YD. Acquisition of data: MS, SZ, YW, and YM. Analysis and interpretation of data: MS, SZ, and YM. Writing, review, and/or revision of the manuscript: MS, QZ, and YD. Administrative, technical, or material support: QZ, MS, and SZ. Study supervision: HJ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingyuan Zhang.

Ethics declarations

All procedures performed involving human participants in our study were in accordance with the ethical standards of the Institutional and/or research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics statement

All experiments were performed in the Oncobiology Key Lab of the Heilongjiang Province Common Institution of Higher Learning and were not outsourced to companies. No papermill was used.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Zhao, S., Duan, Y. et al. GLUT1 participates in tamoxifen resistance in breast cancer cells through autophagy regulation. Naunyn-Schmiedeberg's Arch Pharmacol 394, 205–216 (2021). https://doi.org/10.1007/s00210-020-01893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01893-3

Keywords

Navigation