Skip to main content

Advertisement

Log in

Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

In this study, we hypothesized that reduction of immune cell activation as well as their oxidant or inflammatory mediators with minocycline (MCN), liposome-encapsulated clodronate (LEC), or anti-Ly6G treatments can be neuroprotective approaches in diabetic neuropathy. MCN (40 mg/kg) for reduction of microglial activation, LEC (25 mg/kg) for of macrophage inhibition, or anti-Ly6G (150 μg/kg) for neutrophil suppression injected to streptozotocin (STZ)-induced diabetic rats twice, 3 days, and 1 week (half dose) after STZ. Animal mass and blood glucose levels were measured; thermal and mechanical sensitivities were tested for in pain sensations. The levels of chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, and C-C motif ligand 2 (CCL2), CCL3, and total oxidant status (TOS) and total antioxidant status (TAS) were measured in the spinal cord and sciatic nerve tissues of rats. LEC significantly reduced the glucose level of diabetic rats compared with drug control. However, MCN or anti-LY6G did not change the glucose level. While diabetic rats showed a marked decrease in both thermal and mechanical sensations, all treatments alleviated these abnormal sensations. The levels of chemokines and oxidative stress parameters increased in diabetic rats. All drug treatments significantly decreased the CCL2, CXCL1, and CXCL8 levels of spinal cord tissues and ameliorated the neuronal oxidative stress compared with control treatments. Present findings suggest that the neuroprotective actions of MCN, LEC, or anti-Ly6G treatments may be due to the modulation of neuronal oxidative stress and/or inflammatory mediators of immune cells in diabetic rats with neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA (2009) Chemokines and pain mechanisms. Brain Res Rev 60(1):125–134

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruhn KW, Dekitani K, Nielsen TB, Pantapalangkoor P, Spellberg B (2015) Ly6G-mediated depletion of neutrophils is dependent on macrophages. Results Immunol 6:5–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucher K, Schmitt F, Autenrieth SE, Dillmann I, Nürnberg B, Schenke-Layland K, Beer-Hammer S (2015) Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice. J Leukoc Biol 98:365–372

    Article  CAS  PubMed  Google Scholar 

  • Calcutt NA (2002) Potential mechanisms of neuropathic pain states. Int Rev Neurobiol 50:205–228

    Article  CAS  PubMed  Google Scholar 

  • Christianson JA, Ryals JM, Johnson MS, Dobrowsky RT, Wright DE (2007) Neurotrophic modulation of myelinated cutaneous innervation and mechanical sensory loss in diabetic mice. Neuroscience 145(1):303–313

    Article  CAS  PubMed  Google Scholar 

  • Conti G, Scarpini E, Baron P, Livraghi S, Tiriticco M, Bianchi R, Vedeler C, Scarlato G (2002) Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1beta and p75NTR. J Neurol Sci 195(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Cunha TM, Barsante MM, Guerrero AT, Verri WA, Ferreira SH, Coelho FM, Bertini R, Di Giacinto C, Allegretti M, Cunha FQ, Teixeira MM (2008) Treatment with DF 2162, a non-competitive allosteric inhibitor of CXCR1/2, diminishes neutrophil influx and inflammatory hypernociception in mice. Br J Pharm 154:460–470

    Article  CAS  Google Scholar 

  • Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83:64–70

    Article  CAS  PubMed  Google Scholar 

  • Dawes JM, McMahon SB (2013) Chemokines as peripheral pain mediators. Neurosci Lett 557:1–8

    Article  CAS  PubMed  Google Scholar 

  • Endemann DH, Schiffrin EL (2004) Nitric oxide, oxidative excess and vascular complications of diabetes mellitus. Current Science Inc 6:85–89

    Article  Google Scholar 

  • Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  • Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Feldman EL, Nave KA, Jensen TS, Bennett DLH (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93(6):1296–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Zheng ZM (2014) Animal models of diabetic neuropathic pain. Animal Models of Diabetic Neuropathic Pain Exp Clin Endocrinol Diabetes 122:100–106

    CAS  PubMed  Google Scholar 

  • Gao YJ, Ji RR (2010) Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido-Mesa N, Zarzuelo A, Galvez J (2013) Minocycline: far beyond anantibiotic. Br J Pharmacol 169:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Graves DT, Kayal RA (2008) Diabetic complications and dysregulated innate immunity. Front Biosci 13:1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan R, Purohit S, Wang H (2011) Chemokine (C-C motif) ligand 2 (CCL2) in sera of patients with type 1 diabetes and diabetic complications. PLoS One 6(4):e17822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huizinga MM, Peltier A (2007) Painful diabetic neuropathy: a management-centered review. Clin Diabetes 25:6–15

    Article  Google Scholar 

  • Islam MS (2013) Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res 2013:149452

    PubMed  PubMed Central  Google Scholar 

  • Kawanishi N, Mizokami T, Niihara H, Yada K, Suzuki K (2015) Macrophage depletion by clodronate liposome attenuates muscle injury and inflammation following exhaustive exercise. Biochem Biophys Rep 5:146–151

    PubMed  PubMed Central  Google Scholar 

  • Kiguchi N, Kobayashi Y, Maeda T, Saika F, Kishioka S (2010) CC-chemokine MIP-1α in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci Lett 484(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  CAS  PubMed  Google Scholar 

  • Mert T, Gunay I, Ocal I, Guzel AI, Inal TC, Sencar L, Polat S (2009) Macrophage depletion delays progression of neuropathic pain in diabetic animals. Naunyn Schmiedeberg's Arch Pharmacol 379:445–452

    Article  CAS  Google Scholar 

  • Mert T, Ocal I, Guzel AI, Gunay I (2013) Clodronate changes neurobiological effects of pulsed magnetic field on diabetic rats with peripheral neuropathy. Electromagn Biol Med 32(3):342–354

    Article  CAS  PubMed  Google Scholar 

  • Mert T, Sahin E, Yaman S, Sahin M (2019) Anti-inflammatory properties of liposomes encapsulated clodronate or anti-Ly6G can be modulated by peripheral or central inflammatory markers in carrageenan-induced inflammation model. Inflammopharmacology 27(3):603–612

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7(3):27–340

    Google Scholar 

  • Newton VL, Guck JD, Cotter MA, Cameron NE, Gardiner NJ (2017) Neutrophils infiltrate the spinal cord parenchyma of rats with experimental diabetic neuropathy. J Diabetes Res 2017:4729284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK (2011) Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 661:15–21

    Article  CAS  PubMed  Google Scholar 

  • Pertovaara A, Wei H, Kalmari J, Ruotsalainen M (2001) Pain behavior andresponse properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone a COMT inhibitor with antioxidant properties. Exp Neurol 167:425–434

    Article  CAS  PubMed  Google Scholar 

  • Raoof R, Willemen HLDM, Eijkelkamp N (2018) Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford) 57(3):429–440

    Article  CAS  Google Scholar 

  • Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM. (2006) Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol18:683–689

  • Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A (2014) Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014:674987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw JE, Zimmet PZ, McCarty D, Courten M (2000) Type 2 diabetes worldwide according to the new classification and criteria. Diabetes Care 23(2):B5–B10

    PubMed  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Shehadeh N, Pollack S, Wildbaum G, Zohar Y, Shafat I, Makhoul R, Daod E, Hakim F, Perlman R, Karin N (2009) Selective autoantibody production against CCL3 is associated with human type 1 diabetes mellitus and serves as a novel biomarker for its diagnosis. J Immunol 182(12):8104–8109

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yang Y, Zhang Y, Huang W, Li Z, Zhang Y (2015) Minocycline attenuatespain by inhibiting spinal microglia activation in diabetic rats. Mol Med Rep 12:2677–2682

    Article  CAS  PubMed  Google Scholar 

  • Thacker MA, Clark AK, Marchand F, McMahon SB (2007) Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 105(3):838–847

    Article  PubMed  Google Scholar 

  • Totsch SK, Sorge RE (2017) Immune system involvement in specific pain conditions. Mol Pain 13:1–17

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome mediated intracellular delivery of clodronate and propamidine. J Immunol Meth 193:93–99

    Article  Google Scholar 

  • Wang YR, Mao XF, Wu HY, Wang YX (2018) Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun 499(3):499–505

    Article  CAS  PubMed  Google Scholar 

  • White FA, Jung H, Miller RJ (2007) Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A 104(51):20151–20158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong M, Chung JW, Wong TK (2007) Effects of treatments for symptoms of painful diabetic neuropathy: systematic review. BMJ:335–387

  • Zychowska M, Rojewska E, Piotrowska A, Kreiner G, Mika J (2016) Microglial inhibition influences XCL1/XCR1 expression and causes analgesic effects in a mouse model of diabetic neuropathy. Anesthesiology 125(3):573–589

    Article  CAS  PubMed  Google Scholar 

  • Zychowska M, Rojewska E, Przewlocka B, Mika J (2013) Mechanisms and pharmacology of diabetic neuropathy-experimental and clinical studies. Pharmacol Rep 65(6):1601–1610

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by The Scientific and Technological Research Council of Turkey and supported the current studies with a project number 116S502.

Author information

Authors and Affiliations

Authors

Contributions

TM wrote the article, and ES and MS revised it. TM and SY designed the project studies. TM and SY collected the metabolic and behavioral data and did the analyses. ES and MS collected and analyzed the biochemical data.

Corresponding author

Correspondence to Tufan Mert.

Ethics declarations

In this present study, the experimental protocols were approved by the animal research committee of Kahramanmaras Sutcu Imam University (03–04/2016). All experiments were accomplished in accordance with the guidelines of International Association for the Study of Pain (IASP) Committee for Research and Ethical Issues.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mert, T., Sahin, E., Yaman, S. et al. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. Naunyn-Schmiedeberg's Arch Pharmacol 393, 1293–1302 (2020). https://doi.org/10.1007/s00210-020-01871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01871-9

Keywords

Navigation