Skip to main content

Advertisement

Log in

LncRNA Tincr regulates PKCɛ expression in a miR-31-5p-dependent manner in cardiomyocyte hypertrophy

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cardiomyocyte hypertrophy is a fatal factor in heart disease resulting in heart failure and even mortality. Although many studies have been focusing on the pathogenesis of cardiomyocyte hypertrophy, the exact molecular mechanisms are still unexclusive. In this study, we first found that the expression level of lncRNA Tincr was significantly decreased in the myocardial tissues of TAC mouse models of cardiomyocyte hypertrophy, and this result was further confirmed in H9C2 cells, a widely used rat myoblast cell lines. More intriguingly, we demonstrated that the aberration of Tincr is essential to the pathogenesis of cardiomyocyte hypertrophy, indicated by the re-induction of Tincr improving the heart functions of hypertrophic mice. In mechanism, we identified miR-31-5p as a direct target of Tincr using a widely used online bioinformatics tool StarBase, and this result was further experimentally validated using dual-luciferase reporter assay and real-time PCR. Also, we identified PRKCE as a direct target of miR-31-5p, and loss function of miR-31-5p significantly blocks the positive regulatory effect of Tincr on PRKCE expression in H9C2 cells. The knockdown of Tincr resulted in increased cardiomyocyte size, and, however, inhibition of miR-31-5p or overexpression of PRKCE significantly reversed the increased cardiomyocyte size. Taken together, our study showed that a novel Tincr-miR-31-5p axis targeting PRKCE was involved in cardiomyocyte hypertrophy, indicating that it may provide potential therapy in cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chien KR, Zhu H, Knowlton KU, Miller-Hance W, van-Bilsen M, O'Brien TX, Evans SM (1993) Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 55:77–95

    Article  CAS  Google Scholar 

  • Delpon E, Caballero R, Gomez R, Nunez L, Tamargo J (2005) Angiotensin II, angiotensin II antagonists and spironolactone and their modulation of cardiac repolarization. Trends Pharmacol Sci 26:155–161

    Article  CAS  Google Scholar 

  • Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, Chen X, Han M (2019) Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer 18:3

    Article  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  CAS  Google Scholar 

  • Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 97:14632–14637

    Article  CAS  Google Scholar 

  • Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106

    Article  CAS  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  Google Scholar 

  • Hilfiker-Kleiner D, Shukla P, Klein G, Schaefer A, Stapel B, Hoch M, Muller W, Scherr M, Theilmeier G, Ernst M, Hilfiker A, Drexler H (2010) Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 122:145–155

    Article  CAS  Google Scholar 

  • Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283

    Article  CAS  Google Scholar 

  • Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e0152767

    Article  CAS  Google Scholar 

  • Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235

    Article  CAS  Google Scholar 

  • Kuusisto J, Karja V, Sipola P, Kholova I, Peuhkurinen K, Jaaskelainen P, Naukkarinen A, Yla-Herttuala S, Punnonen K, Laakso M (2012) Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart 98:1007–1013

    Article  Google Scholar 

  • Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97

    Article  CAS  Google Scholar 

  • Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65

    Article  CAS  Google Scholar 

  • Liu Y, Wang Y, He X, Zhang S, Wang K, Wu H, Chen L (2018) LncRNA TINCR/miR-31-5p/C/EBP-alpha feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res 32:35–42

    Article  CAS  Google Scholar 

  • McMullen JR, Ooi JYY (2017) The interplay of protein coding and non-coding RNAs (circRNAs, lncRNAs) during cardiac differentiation. EBioMedicine 25:9–10

    Article  Google Scholar 

  • McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet (London, England) 365:1877–1889

    Article  Google Scholar 

  • Mehra MR, Uber PA, Francis GS (2003) Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol 41:1606–1610

    Article  Google Scholar 

  • Militello G, Weirick T, John D, Doring C, Dimmeler S, Uchida S (2017) Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 18:780–788

    PubMed  CAS  Google Scholar 

  • Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475

    Article  CAS  Google Scholar 

  • Molkentin JD (2013) Parsing good versus bad signaling pathways in the heart: role of calcineurin-nuclear factor of activated T-cells. Circ Res 113:16–19

    Article  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  Google Scholar 

  • Ooi JYY, Bernardo BC, Singla S, Patterson NL, Lin RCY, McMullen JR (2017) Identification of miR-34 regulatory networks in settings of disease and antimiR-therapy: implications for treating cardiac pathology and other diseases. RNA Biol 14:500–513

    Article  Google Scholar 

  • Ren J, Liu W, Li GC, Jin M, You ZX, Liu HG, Hu Y (2018) Atorvastatin attenuates myocardial hypertrophy induced by chronic intermittent hypoxia in vitro partly through miR-31/PKCepsilon pathway. Current medical science 38:405–412

    Article  CAS  Google Scholar 

  • Savarese G, Lund LH (2017) Global public health burden of heart failure. Cardiac failure review 3:7–11

    Article  Google Scholar 

  • Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C (2017) LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 8:47565–47573

    Article  Google Scholar 

  • Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR (1990) Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J biol chem 265:20555–20562

    PubMed  CAS  Google Scholar 

  • Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science (New York, N.Y.) 281:1690–1693

    Article  CAS  Google Scholar 

  • Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    Article  CAS  Google Scholar 

  • Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra322

    Article  CAS  Google Scholar 

  • Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388

    Article  CAS  Google Scholar 

  • Wang Y, Men M, Yang W, Zheng H, Xue S (2015) MiR-31 downregulation protects against cardiac ischemia/reperfusion injury by targeting protein kinase C epsilon (PKCepsilon) directly. Cell Physiol Biochem 36:179–190

  • Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139

    Article  CAS  Google Scholar 

  • Wang K, Jin W, Song Y, Fei X (2017) LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma. Molecular cancer 16:166

    Article  CAS  Google Scholar 

  • Xu TP, Liu XX, Xia R, Yin L, Kong R, Chen WM, Huang MD, Shu YQ (2015) SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene 34:5648–5661

    Article  CAS  Google Scholar 

  • Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209

    Article  CAS  Google Scholar 

  • Yang F, Dong A, Mueller P, Caicedo J, Sutton AM, Odetunde J, Barrick CJ, Klyachkin YM, Abdel-Latif A, Smyth SS (2012) Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PLoS One 7:e40196

    Article  CAS  Google Scholar 

  • Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the following grants: National Natural Science Foundation of China (grant no.81970204), The National Thirteenth Five-Year Project (grant no.2016YFC0903100), The Science research foundation of Shanxi Province Health and Family Planning Commission (grant no. 2017038 and 2018039), The Central Leading Local Science and Technology Development Special Fund Project (grant no.YDZX20191400004850), The Science research foundation of Shanxi Science and Technology Department (grant no. 201801D221422), 6. Ph.D Programs Foundation of the First Clinical Medical College of Shanxi Medical University (grant no. YB161704), and Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

Study design: QH. Experiments and data collection: HS, HL, FZ, HX, and YZ. Data analysis and interpretation: HS. Manuscript writing: QH.

Corresponding author

Correspondence to Qinghua Han.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

All animal experimental procedures in this study were conducted in accordance with the guidelines of the animal ethical committee for animal experimentation in China, and the experimental design was approved by Shanxi Medical University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Shi, H., Zhang, F. et al. LncRNA Tincr regulates PKCɛ expression in a miR-31-5p-dependent manner in cardiomyocyte hypertrophy. Naunyn-Schmiedeberg's Arch Pharmacol 393, 2495–2506 (2020). https://doi.org/10.1007/s00210-020-01847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01847-9

Keywords

Navigation