Skip to main content

Advertisement

Log in

Flos lonicerae flavonoids attenuate experimental ulcerative colitis in rats via suppression of NF-κB signaling pathway

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study sought to isolate active Flos lonicerae flavonoids and evaluate their anti-oxidative and anti-inflammatory effects as well as investigate the molecular mechanistic action of these flavonoids in the rat model of ulcerative colitis (UC). Total flavonoids and three flavonoids (hyperoside, lonicerin, and luteolin) were isolated from honeysuckle and purified via column purification. Rat model of UC was established via 2,4,6-trinitrobenzene sulfonic acid (TNBS) intoxication. The anti-oxidative and anti-inflammatory effects of the three flavonoids against TNBS-induced UC were evaluated by measuring appropriate biomarkers via assay kit. The effects of hyperoside, lonicerin, and luteolin on the regulation of nuclear factor-kappa B (NF-κB) pathway were investigated using Western blot (WB) and real-time polymerase chain reaction (RT-PCR) while their protective effects on UC were also elucidated. Pretreatment with flavonoids (hyperoside, lonicerin, and luteolin at 25–100 mg/kg) and sulfasalazine (SSZ, positive control at 100 mg/kg) substantially attenuated TBNS-induced UC. Also, the flavonoids significantly reduced the levels of respective serum oxidative and proinflammatory markers such as superoxide dismutase (SOD), myeloperoxidase (MPO), malondialdehyde (MDA), prostaglandins E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-beta (IL-β), and C-reactive protein (CRP). In addition, the flavonoids remarkably inhibited the expression of NF-κB signaling pathway. F. lonicerae flavonoids (hyperoside, lonicerin, and luteolin) demonstrated potent anti-UC activities in TBNS-induced UC rat model via anti-oxidative and anti-inflammatory effects through the inhibition of NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Daim MM, Farouk SM, Madkour FF, Azab SS (2015) Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacol Immunotoxicol 37(2):126–139

    PubMed  CAS  Google Scholar 

  • Ali I, Khan D, Ali F, Bibi H, Malik A (2013) Phytochemical, antioxidant and antifungal studies on the constituents of Lonicera Quinquelocularis. J Chem Soc Pak 35:139–143

    CAS  Google Scholar 

  • Bang JS, Oh DH, Choi HM, Sur B-J, Lim S-J, Kim JY, Yang H-I, Yoo MC, Hahm D-H, Kim K (2009) Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther 11:R49

    PubMed  PubMed Central  Google Scholar 

  • Battino M, Giampieri F, Pistollato F, Sureda A, Pittalà V, Fallarino F, Nabavi SF, Atanasov, AG N, SM. (2018) Nrf2 as regulator of innate immunity: a molecular Swiss army knife! Biotechnol Adv 36(2):358–370

    PubMed  CAS  Google Scholar 

  • Becker C, Dornhoff H, Neufert C, Fantini MC, Wirtz S, Huebner S, Nikolaev A, Lehr HA, Murphy AJ, Valenzuela DM, Yancopoulos GD, Galle PR, Karow M, Neurath M (2006) Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J Immunol 177:2760–2764

    PubMed  CAS  Google Scholar 

  • Bianchi ATJ, Moonen-Leusen HWM, van der Heijden PJ, Bokhout B (1995) The use of a double antibody sandwich ELISA and monoclonal antibodies for the assessment of porcine IgM, IgG and IgA concentrations. Vet Immunol Immunopathol 44:309–317

    PubMed  CAS  Google Scholar 

  • Bouayed J, Bohn T (2010) Exogenous antioxidants-double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev 3:228–237

    Google Scholar 

  • Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533

    PubMed  CAS  Google Scholar 

  • Cetinkaya A, Bulbuloglu E, Kantarceken B, Ciralik H, Kurutas EB, Buyukbese MA, Gumusalan Y (2006) Effects of L-carnitine on oxidant/antioxidant status in acetic acid-induced colitis. Dig Dis Sci 51:488–494

    PubMed  CAS  Google Scholar 

  • Chaturvedula PVS, Prakash I (2013) Flavonoids from Astragalus propinquus. J Chem Pharm Res 5:261–265

    CAS  Google Scholar 

  • Coura CO, Souza RB, Rodrigues JAG, Vanderlei Ede SO, de Araújo I, Ribeiro NA, Frota AF, Ribeiro KA, Chaves HV, Pereira KMA, da Cunha RMS, Bezerra MM, Benevides N (2015) Mechanisms involved in the antiinflammatory action of a polysulfated fraction from Gracilaria cornea in rats. PLoS One 10:e0119319

    PubMed  PubMed Central  Google Scholar 

  • Cracowski J-L, Bonaz B, Bessard G, Bessard J, Anglade C, Fournet J (2002) Increased urinary F2-isoprostanes in patients with Crohn’s disease. Am J Gastroenterol 97:99–103

    PubMed  CAS  Google Scholar 

  • Fedorak RN, Empey LR, MacArthur C (1990) Misoprostol provides a colonic mucosal protective effect during acetic acid-induced colitis in rats. Gastroenterology 98:615–625

    PubMed  CAS  Google Scholar 

  • Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, Ziade N, Hashash J (2019) A comprehensive review and update on ulcerative colitis. Dis Mon 2019:1–37

    Google Scholar 

  • Giriş M, Erbil Y, Doğru-Abbasoğlu S, Yanik BT, Aliş H, Olgaç V, Toker G (2007) The effect of heme oxygenase-1 induction by glutamine on TNBS-induced colitis. Int J Color Dis 22:591–599

    Google Scholar 

  • Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T (2008) Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Caramella CJIJP 364:76–86

    CAS  Google Scholar 

  • Hagar HH, El-Medany A, El-Eter E, Arafa M (2007) Ameliorative effect of pyrrolidinedithiocarbamate on acetic acid-induced colitis in rats. Eur J Pharmacol 554:69–77

    PubMed  CAS  Google Scholar 

  • He D, Huang Y, Ayupbek A, Gu D, Yang Y, Aisa HA, Ito Y (2010) Separation and purification of flavonoids from black currant leaves by high-speed countercurrent chromatography and preparative HPLC. J Liq Chromatogr Relat Technol 33:615–628

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hommes DW, Meenen J, de Haas M, ten Kate FJ, von Dem Borne AE, Tytgat GNJ, van Deventer S (1996) Soluble Fc receptor 3 (CD16) and eicosanoid concentration in gut lavage fluid from patients with inflammatory bowel disease: reflection of mucosal inflammation. Gut 38:564–567

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, Lee J (2012) Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res 32:801–816

    PubMed  CAS  Google Scholar 

  • Impellizzeri D, Cordaro M, Campolo M, Gugliandolo E, Esposito E, Benedetto F, Cuzzocrea S, Navarra M (2016) Anti-inflammatory and antioxidant effects of flavonoid-rich fraction of bergamot juice (BJe) in a mouse model of intestinal ischemia/reperfusion injury. Front Pharmacol 7:1–9

    Google Scholar 

  • Jose Leon A, Garrote JA, Arranz E (2006) Cytokines in the pathogenesis of inflammatory bowel diseases. Med Clínica 124:145–152

    Google Scholar 

  • Kaulman A, Bohn T (2016) Bioactivity of polyphenols: preventive and adjuvant strategies toward reducing inflammatory bowel diseases—promises, perspectives, and pitfalls. Oxidative Med Cell Longev 2016:1–29

    Google Scholar 

  • Khajah MA, Orabi KY, Hawai S, Sary HG, EL-Hashim A (2019) Onion bulb extract reduces colitis severity in mice via modulation of colonic inflammatory pathways and the apoptotic machinery. J Ethnopharmacol 241:112008–112018

    PubMed  Google Scholar 

  • Kumar S, Pande A (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16

    Google Scholar 

  • Larrick JW, Wright S (1990) Cytotoxic mechanism of tumor necrosis factor-α. FASEB J 4:3215–3223

    PubMed  CAS  Google Scholar 

  • Lee MJ, Song HJ, Jeong JY, Park SY, Sohn U (2013) Anti-oxidative and anti-inflammatory effects of QGC in cultured feline esophageal epithelial cells. Korean J Physiol Pharmacol 17:81–87

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li XL, Cai YQ, Qin H, Wu Y (2008) Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol 86:841–849

    PubMed  CAS  Google Scholar 

  • Li Y, Cai W, Weng X, Li Q, Wang Y, Chen Y, Zhang W, Yang Q, Guo Y, Zhu X, Wang H (2015) Lonicerae Japonicae Flos and Lonicerae Flos: a systematic pharmacology review. Evidence-based complement. Altern Med 2015:1–16

    Google Scholar 

  • Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative Med Cell Longev 2015:1–14

    Google Scholar 

  • Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F (1997) Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 112:1169–1178

    PubMed  CAS  Google Scholar 

  • Montrosea DC, Nakanishi M, Murphy RC, Zarini S, McAleer JP, Vella AT, Rosenberg D (2015) The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat 116–117:26–36

    Google Scholar 

  • Murdoch TB, O’Donnell S, Silverberg MS, Panaccione R (2015) Biomarkers as potential treatment targets in inflammatory bowel disease: a systematic review. Can J Gastroenterol Hepatol 29:203–208

    PubMed  PubMed Central  Google Scholar 

  • Naito Y, Yoshikawa T, Ando T, Kishi A, Ueda S, Oyamada H, Kondo M (1992) Changes in superoxide dismutase activity in the gastric mucosa of peptic ulcer patients. J Clin Gastroenterol 14:S131–S134

    PubMed  Google Scholar 

  • Neurath M, Fuss I, Strober W (2000) TNBS-colitis. Int Rev Immunol 19:51–62

    PubMed  CAS  Google Scholar 

  • Nieto N, Torres MI, Fernández MI, Girón MD, Ríos A, Suárez MD, Gil A (2000) Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig Dis Sci 45:1820–1827

    PubMed  CAS  Google Scholar 

  • Ogata H, Hibi T (2003) Cytokine and anti-cytokine therapies for inflammatory bowel disease. Curr Pharm Des 9:1107–1113

    PubMed  CAS  Google Scholar 

  • Onizuka Y, Murasei K, Furusu H, Isomto H, Mizuta Y, Takeshima F, Makiyama K, Kohno S (2000) Effect of intrarectal prostaglandin E2 analogue (enprostil) on trinitrobenzenesulphonic acid induced colitis in rats. J Int Med Res 28:28–35

    PubMed  CAS  Google Scholar 

  • Petryszyn P, Ziolkowska J, Paradowski L (2009) Costs and range of health care consumption under general health insurance and sick leaves among patients with inflammatory bowel disease in chosen countries - a literature review. Med Pr 60:59–63

  • Plevy SE, Landers CJ, Prehn J, Carramanzana NM, Deem RL, Shealy D, Targan S (1997) A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 159:6276–6282

    PubMed  CAS  Google Scholar 

  • Qian Z-M, Li H-J, Li P, Ren M-T, Tang D (2007) Simultaneous qualitation and quantification of thirteen bioactive compounds in Flos Lonicerae by high-performance liquid chromatography with diode array detector and mass spectrometry. Chem Pharm Bull 55:1073–1076

    CAS  Google Scholar 

  • Rice E, Miller N, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Google Scholar 

  • Romier B, Schneider Y-J, Larondelle Y, During A (2009) Dietary polyphenols can modulate the intestinal inflammatory response. Nutr Rev 67:363–378

    PubMed  Google Scholar 

  • Rubin DC, Shaker A, Levin M (2012) Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 3:107

    PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor kappaB inflammatory bowel disease. Gut 42:477–484

    PubMed  PubMed Central  CAS  Google Scholar 

  • Subasinghe D, Nawarathna NMM, Samarasekera D (2011) Disease characteristics of inflammatory bowel disease (IBD). J Gastrointest Surg 15:1562–1567

    PubMed  Google Scholar 

  • Tang Y-R, Zeng T, Zafar S, Yuan H-W, Li B, Peng C-Y, Wang S-C, Jian Y-Q, Qin Y-Q, Choudhary MI, Wang W (2018) Lonicerae Flos: a review of chemical constituents and biological activities. Digit Chinese Med 1:173–188

    Google Scholar 

  • Tian T, Wang Z, Zhang J (2017) Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative Med Cell Longev 2017:1–18

    Google Scholar 

  • Toptygina AP, Semikina EL, Bobyleva GV, Miroshkina LV, Petrichuk S (2014) Cytokine profile in children with inflammatory bowel disease. Biochemistry 79:1371–1375

    PubMed  CAS  Google Scholar 

  • Tüzün A, Erdil A, Inal V, Aydin A, Bağci S, Yeşilova Z, Bağcıa S, Yeşilova Z, Sayal A, Karaeren N, Dağalp K (2002) Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin Biochem 35:569–572

    PubMed  Google Scholar 

  • Vermeere S, Assche GV, Rutgeerts P (2005) C-reactive protein as marker for inflammatory bowel disease. Inflamm Bowel Dis 10:661–665

    Google Scholar 

  • Vermeire S, Van Assche G, Rutgeerts P (2006) Recent advances in clinical practice laboratory markers in IBD: useful, magic or unncessary toys? Gut 55:426–431

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vilaseca J, Salas A, Guarner F, Rodriguez R, Malagelada J-R (1990) Participation of thromboxane and other eicosanoid synthesis in the course of experimental inflammatory colitis. Gastroenterology 98

  • Wagner, H, Bauer, R, D., Melchart, D, Pei-Gen Xiao, P-C, Staundinger, A., 2011. Thin-layer and high performance liquid chromatography of Chinese drugs, in: Wagner, H, Bauer, R, D., Melchart, D, Pei-Gen Xiao, P-C, Staundinger, A. (Eds.), Chromatographic fingerprint analysis of herbal medicines. Springer-Verlag/Wien, New York, pp. 587–600

  • Wang Y-H, Ge B, Yang X-L, Zhai J, Yang L-N, Wang X-X, Liu X, Shi J-C, Wu Y-J (2011) Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis. Int Immunopharmacol 11:1620–1627

    PubMed  CAS  Google Scholar 

  • Wang F, Fu Y, Cai W, Sinclair AJ, Li D (2016) Anti-inflammatory activity and mechanisms of a lipid extract from hard-shelled mussel (Mytilus coruscus) in mice with dextran sulphate sodium-induced colitis. J Funct Foods 23:389–399

    CAS  Google Scholar 

  • Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG (2019) Antioxidants: scientific literature landscape analysis. Oxidative Med Cell Longev 2019:1–11

    Google Scholar 

  • Zhang DK, Cheng LN, Huang XL, Shi W, Xiang JY, Gan H (2009) Tetrandrine ameliorates dextran-sulfate-sodium-induced colitis in mice through inhibition of nuclear factor-kappaB activation. Int J Color Dis 24:5–12

    Google Scholar 

  • Zhang YJ, Wang DM, Yang L, Zhou D, Zhang J (2014) Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLoS One 9:e105725

    PubMed  PubMed Central  Google Scholar 

  • Zhou YH, Yu JP, Liu YF, Teng XJ, Ming M, Lv P, An P, Liu SQ, Yu H-G (2006) Effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-α, NF-κB p65, IL-6) in TNBS-induced colitis in rats. Mediat Inflamm 5:1–9

    Google Scholar 

  • Zhou J, Zheng X, Yang Q, Liang Z, Li D, Yang X, Xu J (2013) Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from Clerodendrum cyrtophyllum Turcz leaves. PLoS One 8:e68392–e68400

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu LJ, He J, Cao X, Huang KL, Luo Y, Xu W (2015) Development of a double-antibody sandwich ELISA for rapid detection of Bacillus cereus in food. Sci Rep 6:16092–16102

    Google Scholar 

Download references

Funding

This work was supported by the “Fundamental Research Funds for the Central Universities, 2019-JYB-JS-076.”

Author information

Authors and Affiliations

Authors

Contributions

DL and LZ conceived and designed research. DL and XY conducted experiments. HS contributed new reagents or analytical tools. WZ and GL analyzed data. DL wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Daming Liu or Li Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yu, X., Sun, H. et al. Flos lonicerae flavonoids attenuate experimental ulcerative colitis in rats via suppression of NF-κB signaling pathway. Naunyn-Schmiedeberg's Arch Pharmacol 393, 2481–2494 (2020). https://doi.org/10.1007/s00210-020-01814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01814-4

Keywords

Navigation