Skip to main content

Advertisement

Log in

Repeated restraint stress potentiates methylphenidate and modafinil-induced behavioral sensitization in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Stress increases the susceptibility of drug abuse and drugs of abuse impair behavioral tolerance. It has been shown that stress exposure enhances the sensitivity to the reinforcing properties of drugs, augments locomotor sensitization effects of drugs of abuse and impairs behavioral tolerance. Previously, it has been shown that long-term administration of psychostimulants (Methylphenidate and Modafinil) induced locomotor sensitization effect that was more pronounced after 13 days of drug administration and was greater at high dose. The present study is designed to investigate the relationship between restraint stress and psychostimulants (Methylphenidate and Modafinil) that induced sensitization. Methylphenidate (10 mg/kg/day twice a day), modafinil (75 mg/kg/day once daily), and saline (0.9% NaCl; 1 ml/kg/day) were administered orally to treated and control animals. Rats were exposed to immobilization stress for 30 days (until locomotor sensitization produced) to monitor any change in drug-induced behavioral sensitization. The motor activity was compared daily by using familiar environment of home cage and weekly by novel environment of open field. The results show that the methylphenidate and modafinil-induced locomotor sensitization is enhanced and impaired behavioral tolerance in repeated restrained rats. It shows that the psychostimulants like methylphenidate and modafinil produce greater locomotor sensitization in stressful environment, suggesting addictive effects of stress and psychostimulants (methylphenidate/modafinil) on dopaminergic neurotransmission. These finding may be helpful to develop potential pharmacotherapies for the patients with co-occurring depression and substance abuse/dependence disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ago Y, Nakamura S, Uda M, Kajii Y, Abe M, Baba A et al (2007) Attenuation by the 5-HT1A receptor agonist osemozotan of the behavioral effects of single and repeated methamphetamine in mice. Neuropharmacology 51:914–922

    Google Scholar 

  • Alam N, Choudhary K (Feb 2018) Haloperidol attenuates Methylphenidate and Modafinil induced behavioural sensitization and cognitive enhancement. Metab Brain Dis 33(3):893–906

    CAS  PubMed  Google Scholar 

  • Alam N, Najam R, Naeem S (2016) Attenuation of methylphenidate-induced sensitization by co-administration of buspirone. Pak J Pharm Sci 29(2):585–590

    PubMed  Google Scholar 

  • Anagnostaras SG, Robinson TE (1996) Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 110:1397–1414

    CAS  PubMed  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Pliszka SR (2011) Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharm Biochem Behav 99:211–216

    CAS  Google Scholar 

  • ASSIÉ MB, KOEK W (1996) Possible in vivo 5-HT reuptake blocking properties of 8-OH-DPAT assessed by measuring hippocampal extracellular 5-HT using microdialysis in rats. Br. J Pharmacol 119:845–850.

  • Baker TB, Piper ME, McCarthy D, Majeskie MR, Fiore MC (2004) Addiction motivation reformulated: an affective processing model of negative reinforcement. Psychol Rev 111:33–51 [PubMed]

    PubMed  Google Scholar 

  • Ballon JS, Feifel D (2006) A systematic review of modafinil: potential clinical uses and mechanisms of action. Journal of clinical Psychiatry 67(4):554–566

  • Bastuji H, Jouvet M (1988) Successful treatment of idiopathic hypersomnia and narcolepsy with modafinil. Prog Neuropsychopharmacol Biol Psychiatry 12(5):695–700. https://doi.org/10.1016/0278-5846(88)90014-0

    Article  CAS  PubMed  Google Scholar 

  • Bell SK, Lucke JC, Hall WD (2012) Lessons for enhancement from the history of cocaine and amphetamine use. AJOB Neurosci 3(2):24–29

    Google Scholar 

  • Bradberry CW, Roth RH (1989) Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microdialysis. Neurosci Len 103:97–102

    CAS  Google Scholar 

  • Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75:711–721

    CAS  PubMed  Google Scholar 

  • Chen J-C, Chen P-C, Chiang Y-C (2009) Molecular mechanisms of psychostimulant addiction. Chang Gung Med J 32:148–154

    PubMed  Google Scholar 

  • Clark JJ, Bernstein IL (2004) Reciprocal cross-sensitization between amphetamine and salt appetite. PharmacolBiochemBehav. 78:691–698

    CAS  Google Scholar 

  • Clark JJ, Bernstein IL (2006) A role for D2 but not D1 dopamine receptors in the cross-sensitization between amphetamine and salt appetite. PharmacolBiochemBehav. 83:277–284

    CAS  Google Scholar 

  • Clatworthy P, Lewis S, Brichard L, Hong Y, Izquierdo D, Clark L, Cools R, Aigbirhio F, Baron J, Fryer T, Robbins T (2009) Dopamine release in dissociable striatal sub regions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole KA (2007) The effects of long-term ritalin (methyphenidate) use. Neurosoup.com. http://www.neurosoup.com/pdf/effects_of_longterm_ritalin_use.pdf

  • Covington HE III, Miczek KA (2001) Repeated social-defeat stress, cocaine or morphine: effects on behavioural sensitization and intravenous cocaine self-administration “binges”. Psychopharmacology 158:388–399

    CAS  PubMed  Google Scholar 

  • Covington HE III, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behaviour: dissociation from corticosterone activation. Psychopharmacology 183(3):331–340

    CAS  PubMed  Google Scholar 

  • Cox SM, Benkelfat C, Dagher A, Delaney JS, Durand F, McKenzie SA, Kolivakis T, Casey KF, Leyton M (2009) Striatal dopamine responses to intranasal cocaine self-administration in humans. Biol.Psychiatry 65:846–850

    CAS  PubMed  Google Scholar 

  • Cruz FC, Leão RM, Marin MT, Planeta CS (2010) Stress-induced reinstatement of amphetamine-conditioned place preference and changes in tyrosine hydroxylase in the nucleus accumbens in adolescent rats. Pharmacol Biochem Behav 96(2):160–165

    CAS  PubMed  Google Scholar 

  • Dembo R, Dertke M, Borders S, Washburn M, Schmeidler J (1988) The relationship between physical and sexual abuse and tobacco, alcohol, and illicit drug use among youths in a juvenile detention center. Int J Addict 23(4):351–378

    CAS  PubMed  Google Scholar 

  • Deutch AY, Goldstein M, Baldino F Jr, Roth RH (1988) Telencephalic projections of the A8 dopamine cells group. Ann N Y Acad Sci 537:27–50

    CAS  PubMed  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22:3312–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georges F, Aston-Jones G (2002) Activation of ventral tegmental area cells by the bed nucleus of the striaterminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J Neurosci 22:5173–5187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser PEA, Gerhardt GA (2012) The neuropsychopharmacology of stimulants: dopamine and ADHD, current directions in ADHD and its treatment. In: Norvilitis JM (ed)InTech.https://doi.org/10.5772/30836.Availablefrom:https://www.intechopen.com/books/current-directions-in-adhd-and-its-treatment/the-neuropsychopharmacology-of-stimulants-dopamine-and-adhd

  • Gordon HW (2002) Early environmental stress and biological vulnerability to drug abuse. Psychoneuroendocrinology 27:115–126

    PubMed  Google Scholar 

  • Gronier B (2008 Oct 28) Involvement of glutamate neurotransmission and N-methyl-d-aspartate receptor in the activation of midbrain dopamine neurons by 5-HT1A receptor agonists: an electrophysiological study in the rat. Neuroscience. 156(4):995–1004. https://doi.org/10.1016/j.neuroscience.2008.08.033

    Article  CAS  PubMed  Google Scholar 

  • Hahn B, Zacharko RM, Anisman H (1986) Alterations of amphetamine elicited perseveration and locomotor excitation following acute and repeated stressor application. PharmacolBiochemBehav 25(1):29–33

    CAS  Google Scholar 

  • Haleem DJ (2013) Extending therapeutic use of psychostimulants: focus on serotonin-1A receptor. Prog Neuro-Psychopharmacol Biol Psychiatry 46:170–180

  • Hall FS, Wilkinson LS, Humby T, Robbins TW (1999) Maternal deprivation of neonatal rats produces enduring changes in dopamine function. Synapse. 32(1):37–43

    CAS  PubMed  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Neuroscience. 2:695–703

    CAS  PubMed  Google Scholar 

  • Jackson G (2006) Fact sheet: addiction & stimulants. Retrieved March 26, 2007, from http://icspp.org/pdf Jackson MD stimulant Fact Sheet 18 March 2006. pdf

  • Jeong JY, Lee DH, Kang SS (2013) Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice. Endocrinol Metab (Seoul) 28(4):288–296. https://doi.org/10.3803/EnM.2013.28.4.288PMCID:PMC3871039

    Article  Google Scholar 

  • Kabbaj M, Norton CS, Kollack-Walker S, Watson SJ, Robinson TE, Akil H (2001) Social defeat alters the acquisition of cocaine self-administration in rats: role of individual differences in cocaine-taking behavior. Psychopharmacology 158(4):382–387

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Alesdatter JE (1993) Involvement of N-methyl-D aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. J Pharmacol Exp Ther 267:486–495

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Churchill L, Klitenick MA (1993a) GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57:1047–1060

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Sorg BA, Hooks MS (1993b) The pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol 4:315–334

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Pierce RC, Cornish J, Sorg BA (1998) A role for sensitization in craving and relapse in cocaine addiction. Psychopharmacology 12:49–53

    CAS  Google Scholar 

  • Khantzian EJ (1985) The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry 142:1259–1264

    CAS  PubMed  Google Scholar 

  • Kim D (2012) Practical use and risk of modafinil, a novel waking drug. Environ Health Toxicol 27:e2012007. https://doi.org/10.5620/eht.2012.27.e2012007

    Article  PubMed  PubMed Central  Google Scholar 

  • Klitenick MA, Kalivas PW (1990) Somatodendritic release of dopamine in the ventral tegmental area following morphine. Sot Neurosci Abstr 16:382.18

    Google Scholar 

  • Koob GF (2008) Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 1:18–31 Review

    Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    CAS  PubMed  Google Scholar 

  • Leão RM, Cruz FC, Planeta CS (2009) Exposure to acute restraint stress reinstates nicotine induced place preference in rats. BehavPharmacol 20(1):109–113

    Google Scholar 

  • Leão RM, Cruz FC, Marin MT, Planeta CS (2012) Stress induces behavioral sensitization, increases nicotine-seeking behavior and leads to a decrease of CREB in the nucleus accumbens. Pharmacol Biochem Behav 101:434–442

    PubMed  Google Scholar 

  • Leventhal H (1980) Toward a comprehensive theory of emotion. In Advances in experimental social psychology, ed. L. Berkowitz. vol. 13. New York: Academic

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen B (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26:7870–7874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marlatt GA, Gordon JR (1985) Relapse prevention: maintenance strategies in the treatment of addictive behaviors. Guilford Press, New York

    Google Scholar 

  • Marson L, Yu G, Farber NM (2010) The effects of oral administration of d-Modafinil on male rat ejaculatory behaviour. J Sex Med 7(1 Pt 1):70–78. https://doi.org/10.1111/j.1743-6109.2009.01509.x

    Article  CAS  PubMed  Google Scholar 

  • Matthews K, Dalley JW, Matthews C, Tsai TH, Robbins TW (2001) Periodic maternal separation of neonatal rats produces region- and gender-specific effects on biogenic amine content in postmortem adult brain. Synapse. 40(1):1–10

    CAS  PubMed  Google Scholar 

  • Mohamed AD (2012) Modafinil has the potential for addiction. AJOB Neurosci 3(2):36–38

    Google Scholar 

  • Pacak K, Tjurmina O, Palkovits M, Goldstein DS, Koch CA, Hoff T, Chrousos GP (2002) Chronic hypercortisolemia inhibits dopamine synthesis and turnover in the nucleus accumbens: an in vivo microdialysis study. Neuroendocrinology 76:148–157

    CAS  PubMed  Google Scholar 

  • Perkins KA (1999) Nicotine self-administration. Nicotine Tob Res Suppl 2:S133–S137 discussion S139–140. Review

    Google Scholar 

  • Piazza PV, Le Moal M (1998) The role of stress in drug self administration. Trends Pharmacol Sci 19:67–74

    CAS  PubMed  Google Scholar 

  • Piazza PV, Deminiere JM, le Moal M, Simon H (1990) Stress- and pharmacologically-induced behavioural sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res 514(1):22–26

    CAS  PubMed  Google Scholar 

  • Przegaliñski E, Filip M (1997) Stimulation of serotonin (5-HT)1A receptors attenuates the locomotor, but not the discriminative, effects of amphetamine and cocaine in rats. BehavPharmacol. 8(8):699–706

    Google Scholar 

  • Przegaliñski E, Siwanowicz J, Baran L, Filip M (2000) Activation of serotonin (5-HT) 1A receptors inhibits amphetamine sensitization in mice. Life Sci 66:1011–1019

    PubMed  Google Scholar 

  • Quadros IM, Miczek KA (2009) Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology 206(1):109–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaekers JG, Evers EA, Theunissen EL, Kuypers KPC, Goulas A, Stiers P (2013) Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit. Psychopharmacology 229:219–226. https://doi.org/10.1007/s00213-013-3105-x

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE (1991) The neurobiology of amphetamine psychosis: evidence from studies with an animal model. In: Nakazawa T (ed) Taniguchi symposia on brain sciences, Biological basis of schizophrenic disorders, vol 14. Japan Scientific Societies Press, Tokyo, pp 185–201

    Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    PubMed  Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11:1598–1604

    CAS  PubMed  Google Scholar 

  • Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354. https://doi.org/10.1016/S0149-7634(97)00020-1

    Article  CAS  PubMed  Google Scholar 

  • Russell JA, Mehrabian A (1975) The mediating role of emotions in alcohol use. J Stud Alcohol 36:1508–1536

    CAS  PubMed  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    CAS  PubMed  Google Scholar 

  • Schenk S, Partridge B (2000) Sensitization to cocaine’s reinforcing effects produced by various cocaine pretreatment regimens in rats. PharmacolBiochemBehav 66:765–770

    CAS  Google Scholar 

  • Schmeichel BE, Berridge CW (2013) Neurocircuitry underlying the preferential sensitivity of prefrontal catecholamines to low-dose psychostimulants. Neuropsychopharmacology 38:1078–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaham Y, Stewart J (1994) Exposure to mild stress enhances the reinforcing efficacy of intravenous heroin self-administration in rats. Psychopharmacology 114(3):523–527

    CAS  PubMed  Google Scholar 

  • Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33:13–33

    CAS  PubMed  Google Scholar 

  • Shalev U, Grimm JW, Shaham YY (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54(1):1–42 Review

    CAS  PubMed  Google Scholar 

  • Sherzada A (2012) An analysis of ADHD drugs: Ritalin and Adderall, JCCC Honors Journal: Vol. 3: Iss. 1, Article 2

  • Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology 158:343–359

    CAS  PubMed  Google Scholar 

  • Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141:105–130 Review

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorg BA, Kalivas PW (1991) Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Res 559:29–36

    CAS  PubMed  Google Scholar 

  • Spencer RC, Devilbiss DM, Berridge CW (2015 June 1) The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry 77(11):940–950. https://doi.org/10.1016/j.biopsych.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  • Steketee JD, Murray TF, Kalivas PW (1991) Possible role for G proteins in behavioral sensitization. Bruin Res 545:287–291

    CAS  Google Scholar 

  • Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev 41:203–228

  • Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioural effects of drugs. Behav Pharmacol 4:289–312

    CAS  PubMed  Google Scholar 

  • Thanos PK, Robison LS, Steier J, Hwang YF, Cooper T, Swanson JM, Komatsu DE, Hadjiargyrou M, Volkow ND (2015) A pharmacokinetic model of oral methylphenidate in the rat and effects on behaviour. Pharmacol Biochem Behav. 131:143–153. https://doi.org/10.1016/j.pbb.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomkins SS (1966) Psychological model of smoking behavior. Am J Public Health Nation's Health 56:17–20

    Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587

    CAS  PubMed  Google Scholar 

  • Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, Girault J-A (2010) Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35:401–415

    CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioural sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, De Vries TJ, Wardeh G, Hogenboom FA, Schoffelmeer AN (2001) A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur J Neurosci 14:1533–1538

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121 (1–5)

  • Volkow ND (2004) The reality of comorbidity: depression and drug abuse. Biol Psychiatry 56:714–717

    PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ (2002a) Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 6:S31–S43

    PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Fowler JS, Thanos P, Logan J, Gatley SJ, Gifford A, Ding Y-S, Wong C, Pappas N (2002b) Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 46:79–82

    CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang GJ, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. J Am Med Assoc 301:1148–1154

    CAS  Google Scholar 

  • Wills T, Shiffman S. Coping and substance abuse: a conceptual framework. In: Shiffman S, Wills T, editors. Coping and substance use. Academic press; Orlando, FL: 1985. pp. 3–24

  • Yap JJ, Miczek KA (2007) Social defeat stress, sensitization, and intravenous cocaine self administration in mice. Psychopharmacology 192(2):261–273

    CAS  PubMed  Google Scholar 

  • Yap JJ, Takase LF, Kochman LJ, Fornal CA, Miczek KA, Jacobs BL (2006) Repeated brief social defeat episodes in mice: effects on cell proliferation in the dentate gyrus. Behav Brain Res 172(2):344–350

    PubMed  Google Scholar 

Download references

Acknowledgments

The present research study was carried out after the review and approval of the Department of Pharmacology, Federal Urdu University of Arts, Science and Technology. The authors are thankful to the University for supporting the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nausheen Alam.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alam N conceived and designed research. Chaudhary K conducted experiments, analyzed data, and wrote the manuscript. Both authors read and approved the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, N., Chaudhary, K. Repeated restraint stress potentiates methylphenidate and modafinil-induced behavioral sensitization in rats. Naunyn-Schmiedeberg's Arch Pharmacol 393, 785–795 (2020). https://doi.org/10.1007/s00210-019-01790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01790-4

Keywords

Navigation