Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 9, pp 1107–1119 | Cite as

Terminalia arjuna extract and arjunic acid mitigate cobalt chloride–induced hypoxia stress–mediated apoptosis in H9c2 cells

  • T. Mohan Manu
  • T. AnandEmail author
  • M. D. Pandareesh
  • P. Bhuvanesh Kumar
  • Farhath Khanum
Original Article
  • 91 Downloads

Abstract

Arjunic acid (AA) is one of the major active component of Terminalia arjuna known for its health benefits. In the present study, we evaluated cardioprotective potential of Terminalia arjuna extract (TAE) and AA against cobalt chloride (CoCl2)–induced hypoxia damage and apoptosis in rat cardiomyocytes. TAE (50 μg/ml) and AA (8 μg/ml) significantly (p < 0.001) protected H9c2 cells as evidenced by cell viability assays against CoCl2 (1.2 mM)-induced cytotoxicity. TAE and AA pretreatments protected the cells from oxidative damage by decreasing the generation of free radicals (ROS, hydroperoxide, and nitrite levels). TAE and AA pretreatments retained mitochondrial membrane potential by alleviating the rate of lipid peroxidation induced by CoCl2 treatment. TAE and AA pretreatments elevated antioxidant status including phase II antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and total glutathione levels against CoCl2-induced oxidative stress. Further immunoblotting studies confirmed anti-apoptotic effects of TAE and AA by alleviating the phosphorylation of JNK and c-jun and also by regulating protein expression levels of Bcl2, Bax, caspase 3, heat shock protein-70, and inducible nitric oxide synthase. Overall, our results suggest that both the extract and the active component exhibit antioxidant and anti-apoptotic defense against CoCl2-induced hypoxic injury.

Keywords

Terminalia arjuna Arjunic acid Cobalt chloride Hypoxia Oxidative stress Apoptosis c-Jun N-terminal kinase 

Notes

Acknowledgments

All the authors are grateful to Director DFRL for providing constant support and necessary facilities to conduct the research work. Mohan Manu T is thankful to DST for providing INSPIRE Fellowship.

Authors’ contributions

TA and MMT conceived and designed the research.

MMT and MDP conducted the experiments.

MMT and MDP analyzed the data and written the manuscript.

BKP helped in the extraction of Terminalia arjuna extract.

FK and TA reviewed and corrected the manuscript.

All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645CrossRefGoogle Scholar
  2. Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic Press, pp 121–126Google Scholar
  3. Ahmad MS, Ahmad S, Gautam B, Arshad M, Afzal M (2014) Terminalia arjuna, a herbal remedy against environmental carcinogenicity: an in vitro and in vivo study. Egyptian Journal of Medical Human Genetics 15(1):61–67CrossRefGoogle Scholar
  4. Angeloni C, Hrelia S (2012) Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxidative Med Cell Longev 2012:1–8Google Scholar
  5. Araujo CAC, Leon LL (2001) Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 96(5):723–728CrossRefPubMedGoogle Scholar
  6. Bharani A, Ganguly A, Bhargava KD (1995) Salutary effect of Terminalia arjuna in patients with severe refractory heart failure. Int J Cardiol 49(3):191–199CrossRefPubMedGoogle Scholar
  7. Bharani A, Ganguli A, Mathur LK, Jamra Y, Raman PG (2002) Efficacy of Terminalia arjuna in chronic stable angina: a double-blind, placebo-controlled, crossover study comparing Terminalia arjuna with isosorbide mononitrate. Indian Heart J 54(2):170–175PubMedGoogle Scholar
  8. Bhawani G, Kumar A, Murthy KSN, Kumari N, Swami CG (2013) A retrospective study of effect of Terminalia arjuna and evidence based standard therapy on echocardiographic parameters in patients of dilated cardiomyopathy. J Pharm Res 6(5):493–498Google Scholar
  9. Bishop S, Liu SJ (2017) Cardioprotective action of the aqueous extract of Terminalia arjuna bark against toxicity induced by doxorubicin. Phytomedicine 36:210–216CrossRefPubMedGoogle Scholar
  10. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. In: Methods in enzymology, vol 52. Academic press, pp 302–310Google Scholar
  11. Chang G, Zhang D, Liu J, Zhang P, Ye L, Lu K, Qin S (2014) Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells. Exp Biol Med 239(4):414–422CrossRefGoogle Scholar
  12. Chen HW, Chien CT, Yu SL, Lee YT, Chen WJ (2002) Cyclosporine a regulate oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol 137(6):771–781CrossRefPubMedPubMedCentralGoogle Scholar
  13. Choudhari AB, Nazim S, Gomase PV, Khairnar AS, Shaikh A, Choudhari P (2011) Phytopharmacological review of Arjuna bark. J Pharm Res 4(3):580–581Google Scholar
  14. Chularojmontri L, Wattanapitayakul SK, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Srichairat S (2005) Antioxidative and cardioprotective effects of Phyllanthus urinaria L. on doxorubicin-induced cardiotoxicity. Biol Pharm Bull 28(7):1165–1171CrossRefPubMedGoogle Scholar
  15. Csányi G, Francis JM Jr (2014) Oxidative stress in cardiovascular disease, pp 6002–6008Google Scholar
  16. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673CrossRefPubMedGoogle Scholar
  17. Fahmy NM, Al-Sayed E, Abdel-Daim MM, Karonen M, Singab AN (2016) Protective effect of Terminalia muelleri against carbon tetrachloride-induced hepato and nephro-toxicity in mice and characterization of its bioactive constituents. Pharmaceutical biology 54(2):303-313Google Scholar
  18. Fahmy NM, Al‐Sayed E, Abdel‐Daim MM, Singab AN (2017) Anti‐inflammatory and analgesic activities of terminalia muelleri benth.(combretaceae). Drug development research 78(3-4):146-154Google Scholar
  19. Gauthaman K, Banerjee SK, Dinda AK, Ghosh CC, Maulik SK (2005) Terminalia arjuna (Roxb.) protects rabbit heart against ischemic-reperfusion injury: role of antioxidant enzymes and heat shock protein. J Ethnopharmacol 96(3):403–409CrossRefPubMedGoogle Scholar
  20. Ghosh J, Das J, Manna P, Sil PC (2011) The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials 32(21):4857–4866CrossRefPubMedGoogle Scholar
  21. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guo LX, Liu JH, Xia ZN (2009) Geniposide inhibits CoCl2-induced PC12 cells death via the mitochondrial pathway. Chin Med J 122(23):2886–2892PubMedGoogle Scholar
  23. Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G (2011) Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 49(5):1102–1109CrossRefPubMedGoogle Scholar
  24. Joo H, Lee HJ, Shin EA, Kim H, Seo KH, Baek NI, Kim B, Kim SH (2016) C-Jun N-terminal kinase-dependent endoplasmic reticulum stress pathway is critically involved in arjunic acid induced apoptosis in non‐small cell lung cancer cells. Phytotherapy Research 30(4):596-603Google Scholar
  25. Kamiya T, Hara H, Inagaki N, Adachi T (2010) The effect of hypoxia mimetic cobalt chloride on the expression of EC-SOD in 3T3-L1 adipocytes. Redox Rep 15(3):131–137CrossRefPubMedGoogle Scholar
  26. Kong HL, Li ZQ, Zhao YJ, Zhao SM, Zhu L, Li T, Li HJ (2010) Ginsenoside Rb1 protects cardiomyocytes against CoCl 2-induced apoptosis in neonatal rats by inhibiting mitochondria permeability transition pore opening. Acta Pharmacol Sin 31(6):687–695CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kumar R, Arora R, Agarwal A, Gupta YK (2018) Protective effect of Terminalia chebula against seizures, seizure-induced cognitive impairment and oxidative stress in experimental models of seizures in rats. Journal of ethnopharmacology 215:124-131Google Scholar
  28. Kumar S, Enjamoori R, Jaiswal A, Ray R, Seth S, Maulik SK (2009) Catecholamine-induced myocardial fibrosis and oxidative stress is attenuated by Terminalia arjuna (Roxb.). J Pharm Pharmacol 61(11):1529–1536CrossRefPubMedGoogle Scholar
  29. Kuo CY, Chiu YC, Lee AYL, Hwang TL (2015) Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia. Mitochondrion 23:7–16CrossRefPubMedGoogle Scholar
  30. Liu Y, Huo Z, Yan B, Lin X, Zhou ZN, Liang X, Zhao H (2010) Prolyl hydroxylase 3 interacts with Bcl-2 to regulate doxorubicin-induced apoptosis in H9c2 cells. Biochem Biophys Res Commun 401(2):231–237CrossRefPubMedGoogle Scholar
  31. Mao CY, Lu HB, Kong N, Li JY, Liu M, Yang CY, Yang P (2014) Levocarnitine protects H9c2 rat cardiomyocytes from H2O2-induced mitochondrial dysfunction and apoptosis. Int J Med Sci 11(11):1107–1115CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mao SY, Meng XY, Xu ZW, Zhang WC, Jin XH, Chen X, Xu RC (2017) The role of ZFP580, a novel zinc finger protein, in TGF-mediated cytoprotection against chemical hypoxia-induced apoptosis in H9c2 cardiac myocytes. Mol Med Rep 15(4):2154–2162CrossRefPubMedPubMedCentralGoogle Scholar
  33. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Sadoshima J (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4(4):409–415CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mei Y, Thompson MD, Cohen RA, Tong X (2015) Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta (BBA) - Mol Basis Dis 1852(2):243–251CrossRefGoogle Scholar
  35. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  36. Pandareesh MD, Anand T (2013) Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression. Cell Mol Neurobiol 33(7):875–884CrossRefPubMedGoogle Scholar
  37. Pandareesh MD, Anand T (2014) Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells. Neurochem Res 39(5):800–814CrossRefPubMedGoogle Scholar
  38. Pandareesh MD, Shrivash MK, Kumar HN, Misra K, Bharath MS (2016) Curcumin monoglucoside shows improved bioavailability and mitigates rotenone induced neurotoxicity in cell and Drosophila models of Parkinson’s disease. Neurochem Res 41(11):3113–3128CrossRefPubMedGoogle Scholar
  39. Parveen A, Babbar R, Agarwal S, Kotwani A, Fahim M (2012) Terminalia arjuna enhances baroreflex sensitivity and myocardial function in isoproterenol-induced chronic heart failure rats. J Cardiovasc Pharmacol Ther 17(2):199–207CrossRefPubMedGoogle Scholar
  40. Pawar RS, & Bhutani KK (2005) Effect of oleanane triterpenoids from Terminalia arjuna a cardioprotective drug on the process of respiratory oxyburst. Phytomedicine 12(5):391-393Google Scholar
  41. Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18(5):556–599CrossRefPubMedGoogle Scholar
  42. Poyton RO, Ball KA, Castello PR (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20(7):332–340CrossRefPubMedGoogle Scholar
  43. Ramond A, Godin-Ribuot D, Ribuot C, Totoson P, Koritchneva I, Cachot S, Joyeux-Faure M (2013) Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 27(3):252–261CrossRefPubMedGoogle Scholar
  44. Singh SN, Fletcher RD, Fisher SG, Singh BN, Lewis HD, Deedwania PC, Massie BM, Colling C, Lazzeri D (1995) Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. New England Journal of Medicine 333(2):77-82Google Scholar
  45. Sobhan PK, Seervi M, Deb L, Varghese S, Soman A, Joseph J, Manjula S (2013) Calpain and reactive oxygen species targets Bax for mitochondrial permeabilisation and caspase activation in zerumbone induced apoptosis. PLoS One 8(4):e59350CrossRefPubMedPubMedCentralGoogle Scholar
  46. Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248CrossRefPubMedGoogle Scholar
  47. Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, Li X (2015) Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell Physiol Biochem 37(1):162–175CrossRefPubMedGoogle Scholar
  48. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Phys Heart Circ Phys 301(6):H2181–H2190 aGoogle Scholar
  49. Ubl JJ, Chatton JY, Chen S, Stucki JW (1996) A critical evaluation of insitu measurement of mitochondrial electrical potentials in single hepatocytes. Biochim Biophys Acta (BBA) - Bioenergetics 1276(2):124–132CrossRefGoogle Scholar
  50. Varghese A, Savai J, Pandita N, Gaud R (2015) In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes. Toxicol Rep 2:806–816CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang RS, Oldham WM, Loscalzo J (2014) Network-based association of hypoxia-responsive genes with cardiovascular diseases. New J Phys 16(10):105014CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang G, Cui J, Guo Y, Wang Y, Kang L, Liu L (2016) Cyclosporin a protects H9c2 cells against chemical hypoxia-induced injury via inhibition of MAPK signaling pathway. Int Heart J 57(4):483–489CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • T. Mohan Manu
    • 1
  • T. Anand
    • 1
    Email author
  • M. D. Pandareesh
    • 1
  • P. Bhuvanesh Kumar
    • 1
  • Farhath Khanum
    • 1
  1. 1.Nutrition, Biochemistry and Toxicology DivisionDefence Food Research LaboratoryMysuruIndia

Personalised recommendations