Skip to main content

Advertisement

Log in

Combined vildagliptin and memantine treatment downregulates expression of amyloid precursor protein, and total and phosphorylated tau in a rat model of combined Alzheimer’s disease and type 2 diabetes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

There is increasing evidence of a link between type 2 diabetes mellitus (T2DM) and cognitive decline. T2DM has been recognized as a risk factor for Alzheimer’s disease (AD). The aim of this research was to investigate the biochemical and physiological effects of vildagliptin treatment alone, and in combination with memantine, in a rat model of combined T2DM and AD. The experimental study was carried out on 75 male Wistar rats weighing 180–200 g. The rats were divided into five groups (n = 15): normal group, Alzheimer diabetic control, treated with vildagliptin (10 mg/kg/day), treated with memantine (30 mg/kg/day), and treated with combination of drugs. Serum glucose, lipid profile, acetylcholinesterase (AChE), homocysteine (Hcy), and amyloid beta peptide (Aβ) were determined. Lipid peroxidation was measured in brain tissue. Expression of amyloid precursor protein (APP) in the brain was assessed by q-PCR, and expression of total and phosphorylated tau was determined by Western Blotting. Vildagliptin alone and in combination with memantine caused a decrease in blood glucose, HOMA-IR, lipid profile, Hcy, malanodialdhyde, and acetylcholinesterase, and an increase in apolipoprotein E. Expression of APP and phosphorylated tau protein was decreased with combined vildagliptin and memantine treatment. In conclusion, vildagliptin treatment, either alone or in combination with memantine, modulates AD-associated biochemical changes and downregulates amyloid precursor protein and phosphorylated tau expression in diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinestrases

AD:

Alzheimer disease

AGE:

Advanced glycation end products

APO E:

Apolipopreotein E

APP:

Amyloid precursor protein

Aβ:

Amyloid beta peptide

BACE 1:

β-site Aβ precursorprotein-cleaving enzyme 1

BG:

Blood glucose

CNS:

Central nervous system

DPP-4:

Dipeptidyl peptidase-4

GIP:

Glucose-dependent insolinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

GLUT3:

Glucose transport protein 3

GSK-3β:

Glycogen synthase kinase-3 beta

Hcy:

Homocysteine

HDL-C:

High-density lipoprotein

LDL-C:

Low-density lipoprotein cholesterol

LPO:

Lipid peroxidation

MDA:

Malanodialdhyde

NF-Κβ:

Nuclear factor kappa-light-chain-enhancer of activated β cells

NMDA:

N-methyl-d-aspartate

PBS:

Phosphate-buffered saline

PHF:

Phospho tau antibody

Pp-2A:

Phosphoseryl/phosphothreonyl protein phosphatase-2A

ROS:

Reactive oxygen species

STZ:

Streptozotocin

T2DM:

Type 2diabetes mellitus

TAG:

Triacylglycerol

TC:

Total cholesterol

TGF-β1:

Transforming growth factor beta-1

References

  • Abdelsalam RM, Safar MM (2015) Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J Neurochem 133:700–707

    Article  CAS  PubMed  Google Scholar 

  • Akomolafe A, Beiser A, Meigs JB, Au R, Green RC, Farrer LA, Wolf PA, Seshadri S (2006) Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham study. Arch Neurol 63:1551–1555

    Article  PubMed  Google Scholar 

  • An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, Chia CW, Egan JM, Ferrucci L, Troncoso J, Levey AI, Lah J, Seyfried NT, Legido-Quigley C, O'Brien R, Thambisetty M (2018) Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14:318–329

    Article  PubMed  Google Scholar 

  • Ataie A, Ataee R, Shadifar M, Shahabi S, Aghajanpour SM, Hosseinpour Y (2012) Interaction of memantine with homocysteine on the apoptosis in the rat hippocampus cells. Int J Mol Cell Med 1:145–152

    PubMed  PubMed Central  Google Scholar 

  • Ávila DL, Araújo GR, Silva M, Miranda PH, Diniz MF, Pedrosa ML, Silva ME, de Lima WG, Costa DC (2013) Vildagliptin ameliorates oxidative stress and pancreatic beta cell destruction in type 1 diabeticrats. Arch Med Res 44:194–202

    Article  CAS  Google Scholar 

  • Chen S, Liu AR, An FM, Yao WB, Gao XD (2012) Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age 34:1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Choe EY, Cho Y, Choi Y, Yun Y, Wang HJ, Kwon O, Lee BW, Ahn CW, Cha BS, Lee HC, Kang ES (2014) The effect of DPP-4 inhibitors on metabolic parameters in patients with type 2 diabetes. Diabetes Metab J 38:211–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283:29621–29625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Kamal MA (2014) Fighting Alzheimer’s disease and type 2 diabetes: pathological links and treatment strategies. CNS Neurol Disord Drug Targets 13:271–282

    Article  CAS  PubMed  Google Scholar 

  • De Nazareth AM (2017) Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement Neuropsychol 11:105–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, Staufenbiel M, Cai F, Song W (2013) Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur J Neurosci 37:1962–1969

    Article  PubMed  Google Scholar 

  • Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI (2013) Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta 1832:527–541

  • Ebesunun MO, Obajobi EO (2012) Elevated plasma homocysteine in type 2 diabetes mellitus: a risk factor for cardiovascular diseases. Pan Afr Med J 12:48

    PubMed  PubMed Central  Google Scholar 

  • Fang FF, Ning Y, Zhanhui F, Xiangqin L, Zheng X, Ming W, Hua H, Yong Y (2013) Alzheimer disease animal model by aluminum, beta-amyloid and transforming growth factor beta-1. J Neurosci 1:15–19

    Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  • García-Ayllón MS, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, Lui JK, Masters C, Rowe CC, Szoeke C, Taddei K, Martins RN (2011) Plasma apolipoprotein E and Alzheimer disease risk. Neurology 76:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Hayes MR (2012) Neuronal and intracellular signaling pathways mediating GLP-1 energy balance and glycemic effects. Physiol Beha 106:413–416

    Article  CAS  Google Scholar 

  • Hosseini N, Alaei H, Reisi P, Radahmadi M (2013) The effect of treadmill running on passive avoidance learning in animal model of Alzheimer disease. Int J Prev Med 4:187–192

    PubMed  PubMed Central  Google Scholar 

  • Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, Zhao FY, Han JZ, Huang YH, Li Y, Cheng QM, Zhou ZG, Chen C, Feng DD, Luo ZQ (2017) An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 7:44120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    Article  CAS  PubMed  Google Scholar 

  • Kalaria RN, Maestre GE, Arizaga R, Friedland R, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F, Prince M, Stewart R, Wimo A, Zhang ZX, Antuono P (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7:812–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalid I, Fei L, Cheng-Xin G, Alejandra-del CA, Grundke-I I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  CAS  Google Scholar 

  • Kim B, Backus C, Oh S, Feldman EL (2013) Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer’s disease. J Alzheimers Dis 34:727–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaraju J, Murthy V, Khatwal RB, Dubala A, Chinni S, Basavan D (2013) Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J Pharm Pharmacol 65:1773–17784

    Article  CAS  PubMed  Google Scholar 

  • Lahiri DK, Chen D, Alley GM, Banerjee PK (2006) Effects of memantine on the activity of secretase enzymes in human neuroblastoma cells. Alzheimers Dement 16:S483–S484

    Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesne S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Sengupta A, Haque N, Grundke-Iqbal I, Iqbal K (2004) Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 566:261–269

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang ZF, Holscher C, Gao C, Jiang YH, Liu YZ (2012) Glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol 674:280–286

    Article  CAS  PubMed  Google Scholar 

  • Linnemann AK, Neuman JC, Battiola TJ, Wisinski JA, Kimple ME, Davis DB (2015) Glucagon-like peptide-1 regulates cholecystokinin production in β-cells to protect from apoptosis. Mol Endocrinol 29:978–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu C, Degrande E (2008) Vildagliptin: a new oral treatment for type 2 diabetes mellitus. Vasc Health Risk Manag 4:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  • Mehanna ET, Barakat BM, ElSayed MH, Tawfik MK (2018) An optimized dose of raspberry ketones controls hyperlipidemia and insulin resistance in male obese rats: effect on adipose tissue expression of adipocytokines and Aquaporin 7. Eur J Pharmacol 832:81–89

    Article  CAS  PubMed  Google Scholar 

  • Minkeviciene R, Banerjee P, Tanila H (2004) Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. Pharmacol Exp 311:677–682

    Article  CAS  Google Scholar 

  • National Research Council (US) (2011) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th edn. National Academies Press (US), Washington

  • Norgaard ML, Andersen SS, Schramm TK, Folke F, Jørgensen CH, Hansen ML, Andersson C, Bretler DM, Vaag A, Køber L, Torp-Pedersen C, Gislason GH (2010) Changes in short- and long-term cardiovascular risk of incident diabetes and incident myocardial infarction—a nationwide study. Diabetologia 53:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Palotás M, Palotás A, Bjelik A, Pákáski M, Hugyecz M, Janka Z, Kálmán J (2005) Effect of general anesthetics on amyloid precursor protein and mRNA levels in the rat brain. Neurochem Res 30:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Pan CY, Wang XL (2013) Profile of vildagliptin in type 2 diabetes: efficacy, safety, and patient acceptability. Ther Clin Risk Manag 9:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reno C, Angela M, Yiguo S, Ylva B, Raymond A (2012) Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J Neurosci 32:12973–12978

    Article  CAS  Google Scholar 

  • Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, Xu L, Aschmies S, Kirksey Y, Hu Y, Wagner E, Parratt A, Xu J, Li Z, Zaleska MM, Jacobsen JS, Pangalos MN, Reinhart PH (2008) Impact of apolipoprotein E, apoE polymorphism on brain apoE levels. J Neurosci 28:11445–11453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DM, Keating GM (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66:1515–1534

    Article  CAS  PubMed  Google Scholar 

  • Saura CA, Cardinaux JR (2017) Emerging roles of CREB-regulated transcription coactivators in brain physiology and pathology. J Trends Neurosci 40:720–733

    Article  CAS  Google Scholar 

  • Takeda S, Sato N, Rakugi H, Morishita R (2011) Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol BioSyst 6:1822–1827

    Article  CAS  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Ouyang JP, Wu K, Wang SS, Wen CY, Xia ZY (2005) Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphate 1B in the skeletal muscle of fat-fed, streptozotocin-treated diabetic rats. Aust J Pharm 146:234–243

    CAS  Google Scholar 

  • Yamada N, Araki H, Yoshimura H (2011) Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: participation of 5-HT2A receptors. Psychopharmacology 216:589–599

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Lv XY, Li J, Xu ZG, Chen L (2008) The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008:704045

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dina M. Abo-Elmatty and Noha M. Mesbah designed the study. Samar S. Khalaf and Mohamed M. Hafez were responsible for the laboratory work. Samar S. Khalaf, Mohamed M. Hafez, and Eman T. Mehanna interpreted the results and carried out statistical analysis. All authors contributed to the manuscript writing.

Corresponding author

Correspondence to Samar S. Khalaf.

Ethics declarations

The study protocol was approved by the Ethics Committee of the Faculty of Pharmacy, Suez Canal University (code # 201703RA2).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, S.S., Hafez, M.M., Mehanna, E.T. et al. Combined vildagliptin and memantine treatment downregulates expression of amyloid precursor protein, and total and phosphorylated tau in a rat model of combined Alzheimer’s disease and type 2 diabetes. Naunyn-Schmiedeberg's Arch Pharmacol 392, 685–695 (2019). https://doi.org/10.1007/s00210-019-01616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01616-3

Keywords

Navigation