Skip to main content

Advertisement

Log in

Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-β signaling pathways

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Inflammation is one of the characteristic features during the development of human tumors. A pro-inflammatory cytokine that is known to promote inflammation during cancer development is the transforming growth factor-β (TGF-β). On the other hand, demethylzeylasteral (T-96) is a natural compound isolated from Tripterygium wilfordii Hook F, which has been reported to have various pharmacological properties including anti-inflammatory and immunosuppressive activities. We investigated the effects of T-96 on the highly metastatic breast cancer cell line, MDA-MB-231. Cell migration was assessed by scratch-wound migration assay, and the molecular mechanisms underlying the effects of T-96 were examined by qPCR and Western blot analyses. We also investigated the suppression effects of T-96 on the pulmonary metastasis in the 4T1 mouse model. T-96 inhibited TGF-β-induced migration and epithelial–mesenchymal transition both in vitro and in vivo. These results demonstrate that T-96 inhibited invasion of MDA-MB-231 and 4T1 cells via suppressing the canonical and non-canonical TGF-β signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res

    Google Scholar 

  • Baek SH, Ko JH, Lee JH, Kim C, Lee H, Nam D, Lee J, Lee SG, Yang WM, Um JY, Sethi G, Ahn KS (2016) Ginkgolic acid inhibits invasion and migration and TGF-beta-induced EMT of lung cancer cells through PI3K/Akt/mTOR inactivation. J Cell Physiol 232(2):346–354

  • Bai JP, Shi YL, Fang X, Shi QX (2003) Effects of demethylzeylasteral and celastrol on spermatogenic cell Ca2+ channels and progesterone-induced sperm acrosome reaction. Eur J Pharmacol 464:9–15

    Article  CAS  PubMed  Google Scholar 

  • Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, Zhao J, Gu B, Zheng GX, Yang AG, Jia LT (2014) MiR-200c suppresses TGF-beta signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. Int J Cancer 135:1356–1368

    Article  CAS  PubMed  Google Scholar 

  • Baquero P, Jimenez-Mora E, Santos A, Lasa M, Chiloeches A (2015) TGFbeta induces epithelial-mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways. Mol Carcinog 55(11):1639–1654

  • Buonato JM, Lazzara MJ (2014) ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 74:309–319

    Article  CAS  PubMed  Google Scholar 

  • Davis FM, Stewart TA, Thompson EW, Monteith GR (2014) Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci 35:479–488

    Article  CAS  PubMed  Google Scholar 

  • Drabsch Y, ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568

    Article  CAS  PubMed  Google Scholar 

  • Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    Article  CAS  PubMed  Google Scholar 

  • Frey RS, Mulder KM (1997) TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett 117:41–50

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Ortega D, Ledger A, Roden DL, Law AM, Magenau A, Kikhtyak Z, Cho C, Allerdice SL, Lee HJ, Valdes-Mora F, Herrmann D, Salomon R, Young AI, Lee BY, Sergio CM, Kaplan W, Piggin C, Conway JR, Rabinovich B, Millar EK, Oakes SR, Chtanova T, Swarbrick A, Naylor MJ, O'Toole S, Green AR, Timpson P, Gee JM, Ellis IO, Clark SJ, Ormandy CJ (2015) ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells. PLoS Biol 13:e1002330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg MT, Han YP, Yan C, Shaw MC, Garner WL (2007) TNF-alpha suppresses alpha-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing. J Invest Dermatol 127:2645–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC (2012) TGF-beta1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer 12:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady WM (2005) Transforming growth factor-beta, Smads, and cancer. Clin Cancer Res 11:3151–3154

    Article  CAS  PubMed  Google Scholar 

  • Ha GH, Park JS, Breuer EK (2013) TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 332:63–73

    Article  CAS  PubMed  Google Scholar 

  • Han D, Wu G, Chang C, Zhu F, Xiao Y, Li Q, Zhang T, Zhang L (2015) Disulfiram inhibits TGF-beta-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-kappaB/Snail pathway. Oncotarget 6:40907–40919

    PubMed  PubMed Central  Google Scholar 

  • Hu Q, Yang C, Wang Q, Zeng H, Qin W (2015) Demethylzeylasteral (T-96) treatment ameliorates mice lupus nephritis accompanied by inhibiting activation of NF-kappaB pathway. PLoS One 10:e0133724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugo HJ, Saunders C, Ramsay RG, Thompson EW (2015) New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J Mammary Gland Biol Neoplasia 20:109–119

    Article  PubMed  Google Scholar 

  • Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K (2012) TGF-beta-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 151:205–216

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yao J, Suyama K, Qian X, Qian BZ, Bandyopadhyay S, Loudig O, De Leon-Rodriguez C, Zhou ZN, Segall J, Macian F, Norton L, Hazan RB (2014) Slug promotes survival during metastasis through suppression of Puma-mediated apoptosis. Cancer Res 74:3695–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knerr I, Dittrich K, Miller J, Kummer W, Rosch W, Weidner W, Rascher W (2001) Alteration of neuronal and endothelial nitric oxide synthase and neuropeptide Y in congenital ureteropelvic junction obstruction. Urol Res 29:134–140

    Article  CAS  PubMed  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24:7443–7454

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Djamgoz MBA (2018) Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 62:110–122

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jia L, Liu C, Gong Y, Ren D, Wang N, Zhang X, Zhao Y (2015) Axl as a downstream effector of TGF-beta1 via PI3K/Akt-PAK1 signaling pathway promotes tumor invasion and chemoresistance in breast carcinoma. Tumour Biol 36:1115–1127

    Article  CAS  PubMed  Google Scholar 

  • Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O'Brien T, Kerin MJ (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124:317–326

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin P (2014) TGFbeta and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta 8:18

    Google Scholar 

  • Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E (2014) Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 5:78–94

    Article  PubMed  Google Scholar 

  • Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM, Jakobsson L, Betsholtz C, Sund M, Karlsson MC, Fuxe J (2016) TGF-beta1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 35:748–760

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, Ten Dijke P (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29:1351–1361

    Article  CAS  PubMed  Google Scholar 

  • Piccolo S, Enzo E, Montagner M (2013) p63, Sharp1, and HIFs: master regulators of metastasis in triple-negative breast cancer. Cancer Res 73:4978–4981

    Article  CAS  PubMed  Google Scholar 

  • Qian BZ, Zhang H, Li J, He T, Yeo EJ, Soong DY, Carragher NO, Munro A, Chang A, Bresnick AR, Lang RA, Pollard JW (2015) FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 212:1433–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes LV, Tate CR, Segar HC, Burks HE, Phamduy TB, Hoang V, Elliott S, Gilliam D, Pounder FN, Anbalagan M, Chrisey DB, Rowan BG, Burow ME, Collins-Burow BM (2014) Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat 145:593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Hata A, Lo RS, Massague J, Pavletich NP (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388:87–93

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51:545–556

    Article  CAS  PubMed  Google Scholar 

  • Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14:R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, Brown DG, Colacci A, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH (2015) Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 36(Suppl 1):S232–S253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Neil JR, Schiemann WP (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 23:951–962

    Article  CAS  PubMed  Google Scholar 

  • Tram E, Ibrahim-Zada I, Briollais L, Knight JA, Andrulis IL, Ozcelik H (2011) Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR). Breast Cancer Res 13:R77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16:1987–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11:943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu J, Ying X, Lin PC, Zhou BP (2016) Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway. Sci Rep 6:24606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Peterse JL, van ‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  • Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5:1145–1168

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, Reiss M (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62:497–505

    CAS  PubMed  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, Huang S (2014) Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest 124:564–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HL, Kuo YH, Tsai CT, Huang YT, Chen SC, Chang HW, Lin E, Lin WH, Hseu YC (2011) Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway. Food Chem Toxicol 49:290–298

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM (2014) Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br J Cancer 110:724–732

    Article  CAS  PubMed  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    Article  CAS  PubMed  Google Scholar 

  • Zhao JW, Wang GH, Chen M, Cheng LH, Ji XQ (2012) Demethylzeylasteral exhibits strong inhibition towards UDP-glucuronosyltransferase (UGT) 1A6 and 2B7. Molecules 17:9469–9475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contribution

C Xu, H Cheng, and M Wu conceived and designed the research. L Liu, Y Ji, and J Fan conducted the experiments. L Li and Y Ji analyzed the data. F Li and Y Li contributed to the revision. C Xu wrote the manuscript. All the authors read and approved the manuscript.

Funding

This work was financially supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 81302829, 81500530, 81500544), Fund of the National Natural Science Foundation of China (No. 81373511, 81573910), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mianhua Wu, Haibo Cheng or Changliang Xu.

Ethics declarations

All animal experiments were performed in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals with the approval of the Nanjing University of Chinese Medicine, Nanjing.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ji, Y., Fan, J. et al. Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-β signaling pathways. Naunyn-Schmiedeberg's Arch Pharmacol 392, 593–603 (2019). https://doi.org/10.1007/s00210-019-01614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01614-5

Keywords

Navigation