Skip to main content
Log in

Hydrolysis of the non-canonical cyclic nucleotide cUMP by PDE9A: kinetics and binding mode

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The non-canonical cyclic nucleotide cUMP and the phosphodiesterase PDE9A both occur in neuronal cells. Using HPLC-coupled tandem mass spectrometry, we characterized the kinetics of PDE9A-mediated cUMP hydrolysis. PDE9A is a low-affinity and high-velocity enzyme for cUMP (Vmax = ~ 6 μmol/min/mg; Km = ~ 401 μM). The PDE9 inhibitor BAY 73-6691 inhibited PDE9A-catalyzed cUMP hydrolysis (Ki = 590 nM). Docking studies indicate two H-bonds between the cUMP uridine moiety and Gln453/Asn405 of PDE9A. By contrast, the guanosine moiety of cGMP forms three H-bonds with Gln453. cCMP is not hydrolyzed at a concentration of 3 μM, but inhibits the PDE9A-catalyzed cUMP hydrolysis at concentrations of 100 μM or more. The probable main reason is that the cytosine moiety cannot act as H-bond acceptor for Gln453. A comparison of PDE9A with PDE7A suggests that the preference of the former for cGMP and cUMP and of the latter for cAMP and cCMP is due to stabilized alternative conformations of the side chain amide of Gln453 and Gln413, respectively. This so-called glutamine switch is known to be involved in the regulation of cAMP/cGMP selectivity of some PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

cAMP:

Adenosine 3′,5′-cyclic monophosphate

cCMP:

Cytidine 3′,5′-cyclic monophosphate

cGMP:

Guanosine 3′,5′-cyclic monophosphate

CMP:

Cytidine 5′-monophosphate

cNMP:

Nucleoside 3′,5′-cyclic monophosphate

cUMP:

Uridine 3′,5′-cyclic monophosphate

EDTA:

Ethylenediaminetetraacetic acid

ExoY:

Exotoxin of Pseudomonas aeruginosa with nucleotidyl cyclase properties

GMP:

Guanosine 5′-monophosphate

GST:

Glutathione S-transferase (used as protein tag)

HCN:

Hyperpolarization-activated cyclic nucleotide-gated channel

HPLC-MS/MS:

High-performance liquid chromatography-coupled tandem mass spectrometry

IBMX:

3-Isobutyl-1-methylxanthine

K m :

Michaelis-Menten constant

MRP:

Multidrug resistance-associated protein

NMP:

Nucleoside 5′-monophosphate

PDE:

Phosphodiesterase

PKA:

Protein kinase A

PKG:

Protein kinase G

sAC:

Soluble adenylyl cyclase

SD:

Standard deviation

SEM:

Standard error of the mean

sGC:

Soluble guanylyl cyclase

UMP:

Uridine 5′-monophosphate

V max :

Maximum velocity of an enzymatic reaction under saturating conditions

References

  • Beckert U, Grundmann M, Wolter S, Schwede F, Rehmann H, Kaever V, Kostenis E, Seifert R (2014a) cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem Biophys Res Commun 451:497–502

    Article  CAS  PubMed  Google Scholar 

  • Beckert U, Wolter S, Hartwig C, Bähre H, Kaever V, Ladant D, Frank DW, Seifert R (2014b) ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation. Biochem Biophys Res Commun 450:870–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellamy TC, Garthwaite J (2001) “cAMP-specific” phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Mol Pharmacol 59:54–61

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  • Berrisch S, Ostermeyer J, Kaever V, Kälble S, Hilfiker-Kleiner D, Seifert R, Schneider EH (2017) cUMP hydrolysis by PDE3A. Naunyn Schmiedeberg’s Arch Pharmacol 390:269–280

    Article  CAS  Google Scholar 

  • Brus R, Herman ZS, Juraszczyk Z, Krzemiński T, Trzeciak H, Kurcok A (1984) Central action of cyclic: 3′,5′-thymidine, 3′,5′-uridine and 3′,5′-citidine monophosphates in rat. Acta Med Pol 25:1–9

    CAS  PubMed  Google Scholar 

  • Bähre H, Danker KY, Stasch JP, Kaever V, Seifert R (2014) Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun 443:1195–1199

    Article  CAS  PubMed  Google Scholar 

  • Bähre H, Hartwig C, Munder A, Wolter S, Stelzer T, Schirmer B, Beckert U, Frank DW, Tümmler B, Kaever V, Seifert R (2015) cCMP and cUMP occur in vivo. Biochem Biophys Res Commun 460:909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Martinez J, Milner TA, Buck J, Levin LR (2013) Neuronal expression of soluble adenylyl cyclase in the mammalian brain. Brain Res 1518(1–8):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Cheung WY (1967) Properties of cyclic 3′,5′-nucleotide phosphodiesterase from rat brain. Biochemistry 6:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark M, Cramer RDI, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  • Drummond GI, Perrott-Yee S (1961) Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J Biol Chem 236:1126–1129

    CAS  PubMed  Google Scholar 

  • Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273:15559–15564

    Article  CAS  PubMed  Google Scholar 

  • Hartwig C, Bähre H, Wolter S, Beckert U, Kaever V, Seifert R (2014) cAMP, cGMP, cCMP and cUMP concentrations across the tree of life: high cCMP and cUMP levels in astrocytes. Neurosci Lett 579:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Danker KY, Wolter S, Bähre H, Kaever V, Seifert R (2014) Soluble adenylyl cyclase accounts for high basal cCMP and cUMP concentrations in HEK293 and B103 cells. Biochem Biophys Res Commun 448:236–240

    Article  CAS  PubMed  Google Scholar 

  • Laue S, Winterhoff M, Kaever V, van den Heuvel JJ, Russel FG, Seifert R (2014) cCMP is a substrate for MRP5. Naunyn Schmiedeberg's Arch Pharmacol 387:893–895

    Article  CAS  Google Scholar 

  • Liu S, Mansour MN, Dillman KS, Perez JR, Danley DE, Aeed PA, Simons SP, Lemotte PK, Menniti FS (2008) Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proc Natl Acad Sci U S A 105:13309–13314

    Article  PubMed  PubMed Central  Google Scholar 

  • Monzel M, Kuhn M, Bähre H, Seifert R, Schneider EH (2014) PDE7A1 hydrolyzes cCMP. FEBS Lett 588:3469–3474

    Article  CAS  PubMed  Google Scholar 

  • Munder A, Rothschuh J, Schirmer B, Klockgether J, Kaever V, Tümmler B, Seifert R, Kloth C (2018) The Pseudomonas aeruginosa ExoY phenotype of high-copy-number recombinants is not detectable in natural isolates. Open Biol 8:170250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostermeyer J, Golly F, Kaever V, Dove S, Seifert R, Schneider EH (2018) cUMP hydrolysis by PDE3B. Naunyn Schmiedebergs Arch Pharmacol 391:891–905. https://doi.org/10.1007/s00210-00018-01512-00216

    Article  CAS  PubMed  Google Scholar 

  • Reinecke D, Burhenne H, Sandner P, Kaever V, Seifert R (2011) Human cyclic nucleotide phosphodiesterases possess a much broader substrate-specificity than previously appreciated. FEBS Lett 585:3259–3262

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Schneider EH, Bähre H (2015) From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 148:154–184

    Article  CAS  PubMed  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273:15553–15558

    Article  CAS  PubMed  Google Scholar 

  • van der Staay FJ, Rutten K, Bärfacker L, Devry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schröder UH, Hendrix M (2008) The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 55:908–918

    Article  CAS  PubMed  Google Scholar 

  • van Staveren WC, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo JA, Steinbusch HW, de Vente J (2002) Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 31:729–741

    Article  PubMed  Google Scholar 

  • Vecsler M, Lazar I, Tzur A (2013) Using standard optical flow cytometry for synchronizing proliferating cells in the G1 phase. PLoS One 8:e83935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu Y, Chen Y, Robinson H, Ke H (2005) Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J Biol Chem 280:30949–30955

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007a) Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci U S A 104:5782–5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Robinson H, Ke H (2007b) The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10. J Mol Biol 371:302–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolter S, Golombek M, Seifert R (2011) Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun 415:563–566

    Article  CAS  PubMed  Google Scholar 

  • Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M (2005) Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 68:1775–1781

    Article  CAS  Google Scholar 

  • Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G (2004) A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell 15:279–286

    Article  CAS  PubMed  Google Scholar 

  • Zong X, Krause S, Chen CC, Krüger J, Gruner C, Cao-Ehlker X, Fenske S, Wahl-Schott C, Biel M (2012) Regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity by cCMP. J Biol Chem 287:26506–26512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Martin Stangel (Dept. of Clinical Neuroimmunology and Neurochemistry, MHH) and Dr. Sabine Wolter (Institute of Pharmacology, MHH) for the excellent scientific discussions as well as Mrs. Annette Garbe (Research Core Unit Metabolomics, MHH) for the outstanding technical support.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Schneider, Scharrenbroich, Seifert

Conducted experiments: Scharrenbroich, Kaever

Performed data analysis: Scharrenbroich, Schneider

Performed docking approaches: Dove

Wrote or contributed to the writing of the manuscript: Scharrenbroich, Schneider, Dove, Kaever, Seifert

Corresponding author

Correspondence to Erich H. Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharrenbroich, J., Kaever, V., Dove, S. et al. Hydrolysis of the non-canonical cyclic nucleotide cUMP by PDE9A: kinetics and binding mode. Naunyn-Schmiedeberg's Arch Pharmacol 392, 199–208 (2019). https://doi.org/10.1007/s00210-018-1582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1582-5

Keywords

Navigation