Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 391, Issue 9, pp 1021–1032 | Cite as

Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis

  • Shigeyuki Yamashita
  • Tokiko Suzuki
  • Keisuke Iguchi
  • Takuya Sakamoto
  • Kengo Tomita
  • Hiroki Yokoo
  • Mari Sakai
  • Hiroki Misawa
  • Kohshi Hattori
  • Toshi Nagata
  • Yasuhide Watanabe
  • Naoyuki Matsuda
  • Naoki Yoshimura
  • Yuichi HattoriEmail author
Original Article

Abstract

Levosimendan and milrinone may be used in place of dobutamine to increase cardiac output in septic patients with a low cardiac output due to impaired cardiac function. The effects of the two inotropic agents on cardiac inflammation and left ventricular (LV) performance were examined in mice with cecal ligation and puncture (CLP)-induced sepsis. CLP mice displayed significant cardiac inflammation, as indicated by highly increased pro-inflammatory cytokines and neutrophil infiltration in myocardial tissues. When continuously given, levosimendan prevented but milrinone exaggerated cardiac inflammation, but they significantly reduced the elevations in plasma cardiac troponin-I and heart-type fatty acid-binding protein, clinical markers of cardiac injury. Echocardiographic assessment of cardiac function showed that the effect of levosimendan, given by an intravenous bolus injection, on LV performance was impaired in CLP mice, whereas milrinone produced inotropic responses equally in sham-operated and CLP mice. A lesser effect of levosimendan on LV performance after CLP was also found in spontaneously beating Langendorff-perfused hearts. In ventricular myocytes isolated from control and CLP mice, levosimendan, but not milrinone, caused a large increase in the L-type calcium current. This study represents that levosimendan and milrinone have cardioprotective properties but provide different advantages and drawbacks to cardiac inflammation/dysfunction in sepsis.

Keywords

Cardiac inflammation Cardiac injury Inotropic agent Left ventricular function L-type calcium current Polymicrobial sepsis 

Notes

Acknowledgments

This study was supported by Grant-in-Aids for Challenging Exploratory Research (15K15661) and for Scientific Research (17K08586, 17K11047) from Japan Society for Promotion of Science. The authors wish to thank Prof. Y. Maekawa and Dr. M. Saotome for giving K. Iguchi the opportunity to work at the Department of Health Science, Hamamatsu University School of Medicine. The authors are also grateful to Sailesh Palikhe for proofreading.

Author contributions

Y.W., N.M., N.Y., and Y.H. conceived and designed the experiments. S.Y., T. Suzuki., K.I., Y.W., T. Sakamoto, K.T., H.Y., M.S., H.M., and T.N. performed the experiments. S.Y., T. Suzuki, K.T., and Y.W. analyzed data. Y.W., T. Suzuki, K.H., and Y.H. wrote the article. All authors read and approved the manuscript.

Compliance and ethical standards

Conflict of interest

The authors report no conflict of interest.

Ethics approval

All animal studies were approved by the Animal Care and Use Committee of the University of Toyama and the Animal Research Committee of Hamamatsu University School of Medicine, which are based on the National Institute of Health Guide for the Care and Use of Laboratory Animals and the ARRIVE guidelines.

References

  1. Ajiro Y, Hagiwara N, Katsube Y, Sperelaxis N, Kasanuki H (2002) Levosimendan increases L-type Ca2+ current via phosphodiesterase-3 inhibition in human cardiac myocytes. Eur J Pharmacol 435:27–33CrossRefPubMedGoogle Scholar
  2. Antila S, Kivikko M, Lehtonen L, Eha J, Heikkilä A, Pohjanjousi P, Pentikäinen PJ (2004) Pharmacokinetics of levosimendan and its circulating metabolites in patients with heart failure after an extended continuous infusion of levosimendan. Br J Clin Pharmacol 57:412–415CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beal AL, Cerra FB (1994) Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA 271:226–233CrossRefPubMedGoogle Scholar
  4. Benotti JR, Lesko LJ, McCue JE, Alpert JS (1985) Pharmacokinetics and pharmacodynamics of milrinone in chronic congestive heart failure. Am J Cardiol 56:685–689CrossRefPubMedGoogle Scholar
  5. Court O, Kumar A, Parrillo JE, Kumar A (2002) Clinical review: myocardial depression in sepsis and septic shock. Crit Care 6:500–508CrossRefPubMedPubMedCentralGoogle Scholar
  6. Endoh M (2008) Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J 72:1915–1925CrossRefPubMedGoogle Scholar
  7. Erbüyün K, Vatansever S, Tok D, Ok G, Türköz E, Aydede H, Erhan Y, Tekin İ (2009) Effects of levosimendan and dobutamine on experimental acute lung injury in rats. Acta Histochem 111:404–414CrossRefPubMedGoogle Scholar
  8. Gelinas JP, Russell JA (2016) Vasopressors during sepsis: selection and targets. Clin Chest Med 37:251–262CrossRefPubMedGoogle Scholar
  9. Gordon AC, Perkins GD, Singer M, McAuley DF, Orme RML, Santhakumaran S, Mason AJ, Cross M, Al-Beidh F, Best-Lane J, Brealey D, Nutt CL, McNamee JJ, Reschreiter H, Breen A, Liu KD, Ashby D (2016) Levosimendan for prevention of acute organ dysfunction in sepsis. N Engl J Med 375:1638–1648CrossRefPubMedGoogle Scholar
  10. Guarracino F, Heringlake M, Cholley B, Bettex D, Bouchez S, Lomivorotov VV, Rajek A, Kivikko M, Pollesello P (2018) Use of levosimendan in cardiac surgery: an update after the LEVO-CTS, CHEETAH, and LICORN Trials in the light of clinical practice. J Cardiovasc Pharmacol 71:1–9CrossRefPubMedGoogle Scholar
  11. Hajjej Z, Meddeb B, Sellami W, Labbene I, Morelli A, Ferjani M (2017) Effects of levosimendan on cellular metabolic alterations in patients with septic shock: a randomized controlled pilot study. Shock 48:307–312CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hattori M, Yamazaki M, Ohashi W, Tanaka S, Hattori K, Todoroki K, Fujimori T, Ohtsu H, Matsuda N, Hattori Y (2016) Critical role of endogenous histamine in promoting end-organ tissue injury in sepsis. Intensive Care Med Exp 4:36CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kass DA, Solaro RJ (2006) Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation 113:305–315CrossRefPubMedGoogle Scholar
  14. Marshall JC, Deitch E, Moldawer LL, Opal S, Redl H, van der Poll T (2005) Preclinical models of shock and sepsis: what can they tell us? Shock 24(Suppl 1):1–6CrossRefPubMedGoogle Scholar
  15. Matejovic M, Krouzecky A, Radej J, Novak I (2005) Successful reversal of resistent hypodynamic septic shock with levosimendan. Acta Anaesthesiol Scand 49:127–128CrossRefPubMedGoogle Scholar
  16. Matsuda N, Teramae H, Yamamoto S, Takano K, Takano Y, Hattori Y (2010) Increased death receptor pathway of apoptotic signaling in septic mouse aorta: effect of systemic delivery of FADD siRNA. Am J Physiol Heart Circ Physiol 298:H92–H101CrossRefPubMedGoogle Scholar
  17. Ming MJ, Hu DY, Chen HS, Liu LM, Nan X, Hua CH, Lu RQ (2000) Effect of MCI-154, a calcium sensitizer, on calcium sensitivity of myocardial fibers in endotoxic shock rats. Shock 14:652–656CrossRefPubMedGoogle Scholar
  18. Morelli A, De Castro S, Teboul JL, Singer M, Rocco M, Conti G, De Luca L, Di Angelantonio E, Orecchioni A, Pandian NG, Pietropaoli P (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644CrossRefPubMedGoogle Scholar
  19. Oishi H, Takano K, Tomita K, Takebe M, Yokoo H, Yamazaki M, Hattori Y (2012) Olprinone and colforsin daropate alleviate septic lung inflammation and apoptosis through CREB-independent activation of the Akt pathway. Am J Phys Lung Cell Mol Phys 303:L130–L140Google Scholar
  20. Papp Z, Csapó K, Pollesello P, Haikala H, Edes I (2005) Pharmacological mechanisms contributing to the clinical efficacy of levosimendan. Cardiovasc Drug Rev 23:71–98CrossRefPubMedGoogle Scholar
  21. Paraskevaidis IA, Parissis JT, Th Kremastinos D (2005) Anti-inflammatory and anti-apoptotic effects of levosimendan in decompensated heart failure: a novel mechanism of drug-induced improvement in contractile performance of the failing heart. Curr Med Chem Cardiovasc Hematol Agents 3:243–247CrossRefPubMedGoogle Scholar
  22. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242CrossRefPubMedGoogle Scholar
  23. Parrisis JT, Farmakis D, Th Kremastinos D (2005) Anti-inflammatory effects of levosimendan in decompensated heart failure: impact on weight loss and anemia. Am J Cardiol 95:923–924CrossRefGoogle Scholar
  24. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377CrossRefPubMedGoogle Scholar
  25. Rocci ML Jr, Wilson H (1987) The pharmacokinetics and pharmacodynamics of newer inotropic agents. Clin Pharmacokinet 13:91–109CrossRefPubMedGoogle Scholar
  26. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608CrossRefPubMedGoogle Scholar
  27. Sakai M, Suzuki T, Tomita K, Yamashita S, Palikhe S, Hattori K, Yoshimura N, Matsuda N, Hattori Y (2017) Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation. Am J Physiol Heart Circ Physiol 312:H1224–H1237CrossRefPubMedGoogle Scholar
  28. Sareila O, Korhonen R, Auvinen H, Hämäläinen M, Kankaanranta H, Nissinen E, Moilanen E (2008) Effects of levo- and dextrosimendan on NF-κB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol 155:884–895CrossRefPubMedPubMedCentralGoogle Scholar
  29. Scheiermann P, Ahluwalia D, Hoegl S, Dolfen A, Revermann M, Zwissler B, Muhl H, Boost KA, Hofstetter C (2009) Effects of intravenous and inhaled levosimendan in severe rodent sepsis. Intensive Care Med 35:1412–1419CrossRefPubMedGoogle Scholar
  30. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810CrossRefPubMedPubMedCentralGoogle Scholar
  31. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71CrossRefPubMedGoogle Scholar
  32. Thangamalai R, Kandasamy K, Sukumarin SV, Reddy N, Singh V, Choudhury S, Parida S, Singh TU, Boobalan R, Mishra SK (2014) Atorvastatin prevents sepsis-induced downregulation of myocardial β1-adrenoceptors and decreased cAMP response in mice. Shock 41:406–412CrossRefPubMedGoogle Scholar
  33. Tomita K, Takashina M, Mizuno N, Sakata K, Hattori K, Imura J, Ohashi W, Hattori Y (2015) Cardiac fibroblasts: contributory role in septic cardiac dysfunction. J Surg Res 193:874–887CrossRefPubMedGoogle Scholar
  34. Tsao CM, Li KY, Chen SJ, Ka SM, Liaw WJ, Huang HC, Wu CC (2014) Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: studies in a rat model. Crit Care 18:652CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706CrossRefPubMedGoogle Scholar
  36. Wang Q, Yokoo H, Takashina M, Sakata K, Ohashi W, Abedelzaher LA, Imaizumi T, Sakamoto T, Hattori K, Matsuda N, Hattori Y (2015) Anti-inflammatory profile of levosimendan in cecal ligation-induced septic mice and in lipopolysaccharide-stimulated macrophages. Crit Care Med 43:e508–e520CrossRefPubMedGoogle Scholar
  37. Watanabe Y, Kimura J (2008) Acute inhibitory effect of dronedarone, a noniodinated benzofuran analogue of amiodarone, on Na+/Ca2+ exchange current in guinea pig ventricular myocytes. Naunyn Schmiedeberg’s Arch Pharmacol 377:371–376CrossRefGoogle Scholar
  38. Wu LL, Tang C, Liu MS (2001) Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Phys Regul Integr Comp Phys 281:R408–R416Google Scholar
  39. Zanotti-Cavazzoni SL, Hollenberg SM (2009) Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care 15:392–397CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shigeyuki Yamashita
    • 1
    • 2
  • Tokiko Suzuki
    • 1
  • Keisuke Iguchi
    • 3
    • 4
  • Takuya Sakamoto
    • 1
  • Kengo Tomita
    • 1
  • Hiroki Yokoo
    • 5
  • Mari Sakai
    • 2
  • Hiroki Misawa
    • 1
  • Kohshi Hattori
    • 6
  • Toshi Nagata
    • 3
  • Yasuhide Watanabe
    • 3
  • Naoyuki Matsuda
    • 7
  • Naoki Yoshimura
    • 2
  • Yuichi Hattori
    • 1
    Email author
  1. 1.Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  2. 2.Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  3. 3.Department of Health ScienceHamamatsu University School of MedicineHamamatsuJapan
  4. 4.Department of Internal Medicine III (Cardiology)Hamamatsu University School of MedicineHamamatsuJapan
  5. 5.Department of Health and Nutritional Sciences, Faculty of Health Promotional SciencesTokoha UniversityHamamatsuJapan
  6. 6.Department of Anesthesiology and Pain Relief CenterThe University of Tokyo HospitalTokyoJapan
  7. 7.Department of Emergency and Critical Care MedicineNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations