Skip to main content

Advertisement

Log in

Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balzer F, Aleth S, Hafer L, Schmitz W, Neumann J (2003) Overexpression of protein phosphatase inhibitor-2 in an adenoviral expression system. Naunyn-Schmiedeberg’s Arch Pharmacol 367(suppl 1):R95

    Google Scholar 

  • Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA (1997) Troponin I phosphorylation in the normal and failing adult human heart. Circulation 96:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Brandt H, Lee EYC, Killilea SD (1975) A protein inhibitor of rabbit liver phosphorylase phosphatase. Biochem Biophys Res Commun 63:950–956

    Article  PubMed  CAS  Google Scholar 

  • Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brüchert N, Mavila N, Boknik P, Baba HA, Fabritz L, Gergs U, Kirchhefer U, Kirchhof P, Matus M, Schmitz W, DePaoli-Roach AA, Neumann J (2008) Inhibitor-2 prevents protein phosphatase 1-induced cardiac hypertrophy and mortality. Am J Physiol Heart Circ Physiol 295:H1539–H1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchwalow IB, Podzuweit T, Samoilova VE, Wellner M, Haller H, Grote S, Aleth S, Boecker W, Schmitz W, Neumann J (2004) An in situ evidence for autocrine function of NO in the vasculature. Nitric Oxide 10:203–212

    Article  PubMed  CAS  Google Scholar 

  • Carr AN, Schmidt AG, Suzuki Y, del Monte F, Sato Y, Lanner C, Breeden K, Jing SL, Allen PB, Greengard P, Yatani A, Hoit BD, Grupp IL, Hajjar RJ, DePaoli-Roach AA, Kranias EG (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22:4124–4135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceulemans H, Stalmans W, Bollen M (2002) Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. BioEssays 24:371–381

    Article  PubMed  CAS  Google Scholar 

  • Chen MJ, Dixon JE, Manning G (2017) Genomics and evolution of protein phosphatases. Sci Signal 10:eaag1796

    Article  PubMed  CAS  Google Scholar 

  • Chiang DY, Heck AJ, Dobrev D, Wehrens XH (2016) Regulating the regulator: insights into the cardiac protein phosphatase 1 interactome. J Mol Cell Cardiol 101:165–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choy MS, Page R, Peti W (2012) Regulation of protein phosphatase 1 by intrinsically disordered proteins. Biochem Soc Trans 40(5):969–974 Review

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen P (1991) Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts. Methods Enzymol 201:389–398

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Nimmo GA, Antoniw JF (1977) Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle. Biochem J 162:435–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dancheck B, Ragusa MJ, Allaire M, Nairn AC, Page R, Peti W (2011) Molecular investigations of the structure and function of the protein phosphatase 1-spinophilin-inhibitor 2 heterotrimeric complex. Biochemistry 50:1238–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DePaoli-Roach AA (2003) Protein phosphatase 1 binding proteins. In: Bradshaw RA, Dennis ED (eds) Handbook of cellular signaling. Academic Press, San Diego, pp 613–619

    Chapter  Google Scholar 

  • El-Armouche A, Rau T, Zolk O, Ditz D, Pamminger T, Zimmermann WH, Jäckel E, Harding SE, Boknik P, Neumann J, Eschenhagen T (2003) Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J 17:437–439

    Article  PubMed  CAS  Google Scholar 

  • El-Armouche A, Pamminger T, Ditz D, Zolk O, Eschenhagen T (2004) Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc Res 61:87–93

    Article  PubMed  CAS  Google Scholar 

  • Eto M, Brautigan DL (2012) Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 64:732–739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foulkes JG, Cohen P (1979) The hormonal control of glycogen metabolism. Phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline. Eur J Biochem 97:251–256

    Article  PubMed  CAS  Google Scholar 

  • Gergs U, Boknik P, Buchwalow I, Fabritz L, Matus M, Justus I, Hanske G, Schmitz W, Neumann J (2004) Overexpression of the catalytic subunit of protein phosphatase 2A impairs cardiac function. J Biol Chem 279:40827–40834

    Article  PubMed  CAS  Google Scholar 

  • Gergs U, Berndt T, Buskase J, Jones LR, Kirchhefer U, Müller FU, Schlüter KD, Schmitz W, Neumann J (2007) On the role of junctin in cardiac Ca2+ handling, contractility, and heart failure. Am J Physiol Heart Circ Physiol 293:H728–H734

    Article  PubMed  CAS  Google Scholar 

  • Gergs U, Fahrion CM, Bock P, Fischer M, Wache H, Hauptmann S, Schmitz W, Neumann J (2017) Evidence for a functional role of calsequestrin 2 in mouse atrium. Acta Physiol (Oxf) 219:669–682

    Article  CAS  Google Scholar 

  • Grote-Wessels S, Baba HA, Boknik P, El-Armouche A, Fabritz L, Gillmann HJ, Kucerova D, Matus M, Müller FU, Neumann J, Schmitz M, Stümpel F, Theilmeier G, Wohlschlaeger J, Schmitz W, Kirchhefer U (2008) Inhibition of protein phosphatase 1 by inhibitor-2 exacerbates progression of cardiac failure in a model with pressure overload. Cardiovasc Res 79:464–471

    Article  PubMed  CAS  Google Scholar 

  • Härtel FV, Rodewald CW, Aslam M, Gündüz D, Hafer L, Neumann J, Piper HM, Noll T (2007) Extracellular ATP induces assembly and activation of the myosin light chain phosphatase complex in endothelial cells. Cardiovasc Res 74:487–496

    Article  PubMed  CAS  Google Scholar 

  • He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heijman J, Dewenter M, El-Armouche A, Dobrev D (2013) Function and regulation of serine/threonine phosphatases in the healthy and diseased heart. J Mol Cell Cardiol 64:90–98

    Article  PubMed  CAS  Google Scholar 

  • Helps NR, Street AJ, Elledge SJ, Cohen PT (1994) Cloning of the complete coding region for human protein phosphatase inhibitor 2 using the two hybrid system and expression of inhibitor 2 in E. coli. FEBS Lett 340:93–98

    Article  PubMed  CAS  Google Scholar 

  • Herzig S, Neumann J (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80:173–210

    Article  PubMed  CAS  Google Scholar 

  • Hood AR, Ai X, Pogwizd SM (2017) Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 107:52–57

    Article  PubMed  CAS  Google Scholar 

  • Hou H, Sun L, Siddoway BA, Petralia RS, Yang H, Gu H, Nairn AC, Xia H (2013) Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. J Cell Biol 203:521–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang FL, Glinsmann WH (1976) Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem 70:419–426

    Article  PubMed  CAS  Google Scholar 

  • Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK, DePaoli-Roach AA (2007) Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem 282:28874–28883

    Article  PubMed  CAS  Google Scholar 

  • Institute for Laboratory Animal Research, National Academy of Sciences (2011) The National Academies Press, Washington, DC. https://grants.nih.gov/grants/olaw/Guide-for-the-care-and-use-of-laboratory-animals.p

  • Kirchhefer U, Neumann J, Baba HA, Begrow F, Kobayashi YM, Reinke U, Schmitz W, Jones LR (2001) Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem 276:4142–4149

    Article  PubMed  CAS  Google Scholar 

  • Kirchhefer U, Baba HA, Boknik P, Breeden KM, Mavila N, Bruchert N, Justus I, Matus M, Schmitz W, DePaoli-Roach AA, Neumann J (2005) Enhanced cardiac function in mice overexpressing protein phosphatase inhibitor-2. Cardiovasc Res 68:98–108

    Article  PubMed  CAS  Google Scholar 

  • Knapp J, Boknik P, Deng MC, Huke S, Gombosova I, Klein-Wiele O, Linck B, Lüss H, Müller FU, Nacke P, Scheld HH, Schmitz W, Vahlensieck U, Neumann J (1999) On the contractile function of phosphatases in isolated human coronary arteries. Naunyn Schmiedeberg’s Arch Pharmacol 360:464–472

    Article  CAS  Google Scholar 

  • Li M, Stukenberg PT, Brautigan DL (2008) Binding of phosphatase inhibitor-2 to prolyl isomerase Pin1 modifies specificity for mitotic phosphoproteins. Biochemistry 47:292–300

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen-Schmidt I, Clarke SB, Pyle WG (2016) The neglected messengers: control of cardiac myofilaments by protein phosphatases. J Mol Cell Cardiol 101:81–89

    Article  PubMed  CAS  Google Scholar 

  • MacDougall LK, Campbell DG, Hubbard MJ, Cohen P (1989) Partial structure and hormonal regulation of rabbit liver inhibitor-1; distribution of inhibitor-1 and inhibitor-2 in rabbit and rat tissues. Biochim Biophys Acta 1010:218–226

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153:699–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Gupta RC, Tiwari N, Sharov V, Sabbah HN (2002) Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J Heart Lung Transplant 21:366–373

    Article  PubMed  Google Scholar 

  • Neumann J, Gupta RC, Schmitz W, Scholz H, Nairn AC, Watanabe AM (1991) Evidence for isoproterenol-induced phosphorylation of phosphatase inhibitor-1 in the intact heart. Circ Res 69:1450–1457

    Article  PubMed  CAS  Google Scholar 

  • Neumann J, Boknik P, Herzig S, Schmitz W, Scholz H, Gupta RC, Watanabe AM (1993) Evidence for physiological functions of protein phosphatases in the heart: evaluation with okadaic acid. Am J Phys 265:H257–H266

    Article  CAS  Google Scholar 

  • Neumann J, Eschenhagen T, Jones LR, Linck B, Schmitz W, Scholz H, Zimmermann N (1997) Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 29:265–272

    Article  PubMed  CAS  Google Scholar 

  • Park IK, DePaoli-Roach AA (1994) Domains of phosphatase inhibitor-2 involved in the control of the ATP-mg-dependent protein phosphatase. J Biol Chem 269:28919–28928

    PubMed  CAS  Google Scholar 

  • Park IK, Roach P, Bondor J, Fox SP, DePaoli-Roach AA (1994) Molecular mechanism of the synergistic phosphorylation of phosphatase inhibitor-2. Cloning, expression, and site-directed mutagenesis of inhibitor-2. J Biol Chem 269:944–954

    PubMed  CAS  Google Scholar 

  • Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, Weiser D, Hahn H, Carr AN, Syed F, Mavila N, Jha L, Qian J, Marreez Y, Chen G, McGraw DW, Heist EK, Guerriero JL, DePaoli-Roach AA, Hajjar RJ, Kranias EG (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96:756–766

    Article  PubMed  CAS  Google Scholar 

  • Peti W, Nairn AC, Page R (2012) Folding of intrinsically disordered protein phosphatase 1 regulatory proteins. Curr Phys Chem 2:107–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roach P, Roach PJ, DePaoli-Roach AA (1985) Phosphoprotein phosphatase inhibitor-2. Identification as a species of molecular weight 31,000 in rabbit muscle, liver, and other tissues. J Biol Chem 260:6314–6317

    PubMed  CAS  Google Scholar 

  • Salih V, Greenwald SE, Chong CF, Coumbe A, Berry CL (1992) The development of an in-vitro perfusion system for studies on cultured cells. Int J Exp Pathol 73:625–632

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sami F, Smet-Nocca C, Khan M, Landrieu I, Lippens G, Brautigan DL (2011) Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2. Biochemistry 50:6567–6578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satinover DL, Leach CA, Stukenberg PT, Brautigan DL (2004) Activation of aurora-a kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci U S A 101:8625–8630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotoud H, Borgmeyer U, Schulze C, El-Armouche A, Eschenhagen T (2015) Development of phosphatase inhibitor-1 peptides acting as indirect activators of phosphatase 1. Naunyn Schmiedeberg's Arch Pharmacol 388:283–393

    Article  CAS  Google Scholar 

  • Terentyev D, Hamilton S (2016) Regulation of sarcoplasmic reticulum Ca2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 101:156–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tung HY, Wang W, Chan CS (1995) Regulation of chromosome segregation by Glc8p, a structural homolog of mammalian inhibitor 2 that functions as both an activator and an inhibitor of yeast protein phosphatase 1. Mol Cell Biol 15:6064–6074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, Milgram SL, Penninger JM, Allen PB, Greengard P, Muallem S (2005) Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 7:405–411

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Cronmiller C, Brautigan DL (2008a) Maternal phosphatase inhibitor-2 is required for proper chromosome segregation and mitotic synchrony during Drosophila embryogenesis. Genetics 179:1823–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Stukenberg PT, Brautigan DL (2008b) Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol Biol Cell 19:4852–4862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Hurley TD, DePaoli-Roach AA (2000) Interaction of inhibitor-2 with the catalytic subunit of type 1 protein phosphatase. Identification of a sequence analogous to the consensus type 1 protein phosphatase-binding motif. J Biol Chem 275:22635–22644

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Hou H, Pahng A, Gu H, Nairn AC, Tang YP, Colombo PJ, Xia H (2015) Protein Phosphatase-1 Inhibitor-2 is a novel memory suppressor. J Neurosci 35:15082–15087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zambrano CA, Egaña JT, Núñez MT, Maccioni RB, González-Billault C (2004) Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radic Biol Med 36:1393–1340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was part of the thesis of Thorsten Krause.

Author information

Authors and Affiliations

Authors

Contributions

F.U.M., W.S., and J.N. designed the research; T.K., S.G.-W., F.B., P.B., U.K., and I.B.B. performed research; T.K., S.G.-W., F.B., P.B., U.K., I.B.B., F.U.M., and U.G. analyzed data, U.G. and J.N. wrote the paper.

Corresponding author

Correspondence to Joachim Neumann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, T., Grote-Wessels, S., Balzer, F. et al. Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn-Schmiedeberg's Arch Pharmacol 391, 859–873 (2018). https://doi.org/10.1007/s00210-018-1515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1515-3

Keywords

Navigation