Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury

  • Filiz Mercantepe
  • Tolga Mercantepe
  • Atilla Topcu
  • Adnan Yılmaz
  • Levent Tumkaya
Original Article
  • 71 Downloads

Abstract

Despite the enormous advances made in the field of oncology, no solution to the side effect of nephrotoxicity caused by cisplatin used as an antineoplastic agent for approximately 40 years has yet been discovered. This study investigated the effects of cisplatin on the kidney, the damage mechanism involved, and the potential capacity of agents such as amifostine, curcumin, and melatonin to elicit a future therapeutic protocol in cisplatin-induced nephrotoxicity at the ultrastructural and molecular levels. Our study consisted of five groups: control (saline solution only; group 1), cisplatin (cisplatin only; group 2), cisplatin + amifostine (group 3), cisplatin + curcumin (group 4), and cisplatin + melatonin (group 5). Rats in all groups except the control group were administered a single intraperitoneal dose of 7.5 mg/kg cisplatin. All animals were sacrificed under anesthesia on the sixth day after cisplatin administration. Cisplatin increased serum urea and serum creatinine levels and caused an increase in tubular necrosis scores (TNS), HPS, NF-κB/p65, 8-OHdG, and caspase-3 expressions (p < 0.05). Additionally, we observed basal membrane thickening in glomerules, intense electron deposition in the subendothelial region, and atypical folds in podocyte pedicels. Amifostine, curcumin, and melatonin reduced the increases in serum urea and serum creatinine levels following cisplatin administration and reduced the levels of TNS, HPS, NF-κB/p65, 8-OHdG, and caspase-3 expressions (p < 0.05). ROS-scavenging antioxidants may be a promising means of preventing acute kidney disease in patients using cisplatin in the treatment of malignant tumors.

Keywords

Amifostine Cisplatin Curcumin Melatonin Nephrotoxicity 

Notes

Author contribution

TM and FM conceived and designed the research. TM conducted the experiments. AY contributed new reagents or analytical tools. TM, FM, AY, AT, and LT analyzed the data. TM, FM, and AT wrote the manuscript. All authors read and approved the manuscript.

Funding information

This work was supported by the Scientific Research Projects Unit of Recep Tayyip Erdogan University [TSA-2016-652, 2016].

Compliance with ethical standards

The study was approved by the Institutional Ethics committee and observed the ethical principles of the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Ahmed AY, Gad AM, El-Raouf OMA (2017) Curcumin ameliorates diclofenac sodium-induced nephrotoxicity in male albino rats. J Biochem Mol Toxicol 31:e21951.  https://doi.org/10.1002/jbt.21951 CrossRefGoogle Scholar
  2. Amirshahrokhi K, Khalili AR (2015) Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model. Inflammation 38:476–484.  https://doi.org/10.1007/s10753-014-9953-7 CrossRefPubMedGoogle Scholar
  3. Asna N, Lewy H, Ashkenazi IE, Deutsch V, Peretz H, Inbar M, Ron IG (2005) Time dependent protection of amifostine from renal and hematopoietic cisplatin induced toxicity. Life Sci 76:1825–1834.  https://doi.org/10.1016/j.lfs.2004.09.028 CrossRefPubMedGoogle Scholar
  4. Ateyya H, Hassan ZA, El-Sherbeeny NA (2017) The selective tyrosine kinase-inhibitor nilotinib alleviates experimentally induced cisplatin nephrotoxicity and heptotoxicity. Environ Toxicol Pharmacol 55:60–67.  https://doi.org/10.1016/j.etap.2017.08.008 CrossRefPubMedGoogle Scholar
  5. Beauregard A-P, Harquail J, Lassalle-Claux G, Belbraouet M, Jean-Francois J, Touaibia M, Robichaud G (2015) CAPE analogs induce growth arrest and apoptosis in breast cancer cells. Molecules 20:12576–12589.  https://doi.org/10.3390/molecules200712576 CrossRefPubMedGoogle Scholar
  6. Bougioukas I, Didilis V, Emigholz J, Waldmann-Beushausen R, Stojanovic T, Mühlfeld C, Schoendube FA, Danner BC (2016) The effect of amifostine on lung ischaemia-reperfusion injury in rats. Interact Cardiovasc Thorac Surg 23:273–279.  https://doi.org/10.1093/icvts/ivw105 CrossRefPubMedGoogle Scholar
  7. Canyilmaz E, Uslu G, Bahat Z et al (2015) Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: results of an experimental study. Biomed Rep 4:45–50.  https://doi.org/10.3892/br.2015.547 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen M-F, Yang C-M, Su C-M, Hu M-L (2014) Vitamin C protects against cisplatin-induced nephrotoxicity and damage without reducing its effectiveness in C57BL/6 mice xenografted with Lewis lung carcinoma. Nutr Cancer 66:1085–1091.  https://doi.org/10.1080/01635581.2014.948211 CrossRefPubMedGoogle Scholar
  9. Dilber Y, Inan S, Ercan GA, Sencan A (2016) The role of CAPE in PI3K/AKT/mTOR activation and oxidative stress on testis torsion. Acta Histochem 118:31–37.  https://doi.org/10.1016/j.acthis.2015.11.004 CrossRefPubMedGoogle Scholar
  10. Domitrović R, Cvijanović O, Šušnić V, Katalinić N (2014) Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology 324:98–107.  https://doi.org/10.1016/j.tox.2014.07.004 CrossRefPubMedGoogle Scholar
  11. Du Q, Hao C, Gou J et al (2016) Protective effects of p-nitro caffeic acid phenethyl ester on acute myocardial ischemia-reperfusion injury in rats. Exp Ther Med 11:1433–1440.  https://doi.org/10.3892/etm.2016.3070 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Estrela GR, Wasinski F, Bacurau RF, Malheiros DMAC, Câmara NOS, Araújo RC (2014) Kinin B2 receptor deletion and blockage ameliorates cisplatin-induced acute renal injury. Int Immunopharmacol 22:115–119.  https://doi.org/10.1016/j.intimp.2014.06.025 CrossRefPubMedGoogle Scholar
  13. Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66:2202–2213.  https://doi.org/10.1111/j.1523-1755.2004.66010.x CrossRefPubMedGoogle Scholar
  14. Galgamuwa R, Hardy K, Dahlstrom JE, Blackburn AC, Wium E, Rooke M, Cappello JY, Tummala P, Patel HR, Chuah A, Tian L, McMorrow L, Board PG, Theodoratos A (2016) Dichloroacetate prevents cisplatin-induced nephrotoxicity without compromising cisplatin anticancer properties. J Am Soc Nephrol 27:3331–3344.  https://doi.org/10.1681/ASN.2015070827 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ghaznavi H, Mehrzadi S, Dormanesh B, Tabatabaei SMTH, Vahedi H, Hosseinzadeh A, Pazoki-Toroudi HR, Rashidian A (2016) Comparison of the protective effects of melatonin and silymarin against gentamicin-induced nephrotoxicity in rats. J Evid Based Complementary Altern Med 21:49–55.  https://doi.org/10.1177/2156587215621672 CrossRefGoogle Scholar
  16. Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, Ghaznavi H, Fatemi I, Mehrzadi S (2017) Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 31:625–635.  https://doi.org/10.1111/fcp.12303 PubMedGoogle Scholar
  17. Greggi Antunes LM, Darin JDC, Bianchi M de LP (2001) Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 43:145–150.  https://doi.org/10.1006/phrs.2000.0724 CrossRefGoogle Scholar
  18. Hagos Y, Wolff NA (2010) Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins (Basel) 2:2055–2082.  https://doi.org/10.3390/toxins2082055 CrossRefGoogle Scholar
  19. Helmy MW, Helmy MM, Abd Allah DM, Abo Zaid AM, Mohy el-Din MM (2014) Role of nitrergic and endothelin pathways modulations in cisplatin-induced nephrotoxicity in male rats. J Physiol Pharmacol 65:393–399PubMedGoogle Scholar
  20. Heung M, Chawla LS (2014) Acute kidney injury: gateway to chronic kidney disease. Nephron Clin Pract 127:30–34.  https://doi.org/10.1159/000363675 CrossRefPubMedGoogle Scholar
  21. Ho C, Hsu YC, Lei CC, Mau SC, Shih YH, Lin CL (2016) Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated Wnt signaling pathways. Am J Med Sci 351:286–295.  https://doi.org/10.1016/j.amjms.2015.12.017 CrossRefPubMedGoogle Scholar
  22. Huang YC, Tsai MS, Hsieh PC, Shih JH, Wang TS, Wang YC, Lin TH, Wang SH (2017) Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol Appl Pharmacol 329:128–139.  https://doi.org/10.1016/j.taap.2017.05.034 CrossRefPubMedGoogle Scholar
  23. Ienaga K, Hum Park C, Yokozawa T (2014) Daily hydroxyl radical scavenging capacity of mammals. Drug Discov Ther 8:71–75.  https://doi.org/10.5582/ddt.8.71 CrossRefPubMedGoogle Scholar
  24. Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, Rugo HS, Liu MC, Stearns V, Come SE, Timms KM, Hartman AR, Borger DR, Finkelstein DM, Garber JE, Ryan PD, Winer EP, Goss PE, Ellisen LW (2015) TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol 33:1902–1909.  https://doi.org/10.1200/JCO.2014.57.6660 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Katagiri D, Hamasaki Y, Doi K, Negishi K, Sugaya T, Nangaku M, Noiri E (2016) Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int 89:374–385.  https://doi.org/10.1038/ki.2015.327 CrossRefPubMedGoogle Scholar
  26. Kawahara A, Azuma K, Hattori S, Nakashima K, Basaki Y, Akiba J, Takamori S, Aizawa H, Yanagawa T, Izumi H, Kohno K, Kono S, Kage M, Kuwano M, Ono M (2010) The close correlation between 8-hydroxy-2′-deoxyguanosine and epidermal growth factor receptor activating mutation in non-small cell lung cancer. Hum Pathol 41:951–959.  https://doi.org/10.1016/j.humpath.2009.12.007 CrossRefPubMedGoogle Scholar
  27. Ke Y, Xu X, Wu S, Huang J, Geng Y, Misra H, Li Y (2013) Protective effects of extracts from Fructus rhodomyrti against oxidative DNA damage in vitro and in vivo. Oxidative Med Cell Longev 2013:1–8.  https://doi.org/10.1155/2013/507407 CrossRefGoogle Scholar
  28. Khajavi Rad A, Mohebbati R, Hosseinian S (2017) Drug-induced nephrotoxicity and medicinal plants. Iran J Kidney Dis 11:169–179PubMedGoogle Scholar
  29. Kilic U, Kilic E, Tuzcu Z, Tuzcu M, Ozercan IH, Yilmaz O, Sahin F, Sahin K (2013) Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab (Lond) 10:7.  https://doi.org/10.1186/1743-7075-10-7 CrossRefPubMedCentralGoogle Scholar
  30. Kuhlmann MK, Horsch E, Burkhardt G, Wagner M, Köhler H (1998) Reduction of cisplatin toxicity in cultured renal tubular cells by the bioflavonoid quercetin. Arch Toxicol 72:536–540.  https://doi.org/10.1007/s002040050539 CrossRefPubMedGoogle Scholar
  31. Kumar P, Sulakhiya K, Barua CC, Mundhe N (2017) TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol Cell Biochem 431:113–122.  https://doi.org/10.1007/s11010-017-2981-5 CrossRefPubMedGoogle Scholar
  32. Li CZ, Jin HH, Sun HX, Zhang ZZ, Zheng JX, Li SH, Han SH (2016) Eriodictyol attenuates cisplatin-induced kidney injury by inhibiting oxidative stress and inflammation. Eur J Pharmacol 772:124–130.  https://doi.org/10.1016/j.ejphar.2015.12.042 CrossRefPubMedGoogle Scholar
  33. Ma P, Zhang S, Su X et al (2015) Protective effects of icariin on cisplatin-induced acute renal injury in mice. Am J Transl Res 7:2105–2114PubMedPubMedCentralGoogle Scholar
  34. Ma Z-N, Liu Z, Wang Z, Ren S, Tang S, Wang YP, Xiao SY, Chen C, Li W (2017) Supplementation of American ginseng berry extract mitigated cisplatin-evoked nephrotoxicity by suppressing ROS-mediated activation of MAPK and NF-κB signaling pathways. Food Chem Toxicol 110:62–73.  https://doi.org/10.1016/j.fct.2017.10.006 CrossRefPubMedGoogle Scholar
  35. Manohar S, Leung N (2017) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 0:0.  https://doi.org/10.1007/s40620-017-0392-z Google Scholar
  36. Mercantepe T, Unal D, Selli J, Mercantepe F, Unal B, Karabiyik TN (2016) Protective effects of estrogen and bortezomib in kidney tissue of post-menopausal rats: an ultrastructural study. Ren Fail 38:1129–1135.  https://doi.org/10.1080/0886022X.2016.1184958 CrossRefPubMedGoogle Scholar
  37. Mercantepe T, Unal D, Tümkaya L, Yazici ZA (2018) Protective effects of amifostine, curcumin and caffeic acid phenethyl ester against cisplatin-induced testis tissue damage in rats. Exp Ther Med 15.  https://doi.org/10.3892/etm.2018.5819
  38. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2:2490–2518.  https://doi.org/10.3390/toxins2112490 CrossRefGoogle Scholar
  39. Nasri H (2013) Comment on: a model for prediction of cisplatin induced nephrotoxicity by kidney weight in experimental rats. J Res Med Sci 18:1119–1120PubMedPubMedCentralGoogle Scholar
  40. Nematbakhsh M, Ebrahimian S, Tooyserkani M, Eshraghi-Jazi F, Talebi A, Ashrafi F (2013) Gender difference in cisplatin-induced nephrotoxicity in a rat model: greater intensity of damage in male than female. Nephrourol Mon 5:818–821.  https://doi.org/10.5812/numonthly.10128 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nematbakhsh M, Pezeshki Z, Jazi FE et al (2017) Cisplatin-induced nephrotoxicity; protective supplements and gender differences. Asian Pac J Cancer Prev 18:295–314.  https://doi.org/10.22034/APJCP.2017.18.2.295 PubMedPubMedCentralGoogle Scholar
  42. Ognjanović BI, Djordjević NZ, Matić MM, Obradović JM, Mladenović JM, Štajn AŠ, Saičić ZS (2012) Lipid peroxidative damage on cisplatin exposure and alterations in antioxidant defense system in rat kidneys: a possible protective effect of selenium. Int J Mol Sci 13:1790–1803.  https://doi.org/10.3390/ijms13021790 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Omar HA, Mohamed WR, Arab HH, Arafa ESA (2016) Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PLoS One 11:1–18.  https://doi.org/10.1371/journal.pone.0151649 CrossRefGoogle Scholar
  44. Ozkok A, Edelstein CL (2014) Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014:1–17.  https://doi.org/10.1155/2014/967826 CrossRefGoogle Scholar
  45. Ozkok A, Ravichandran K, Wang Q, Ljubanovic D, Edelstein CL (2016) NF-κB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett 240:105–113.  https://doi.org/10.1016/j.toxlet.2015.10.028 CrossRefPubMedGoogle Scholar
  46. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007.  https://doi.org/10.1038/sj.ki.5002786 CrossRefPubMedGoogle Scholar
  47. Pandi-Perumal SR, Bahammam AS, Brown GM et al (2013) Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 23:267–300.  https://doi.org/10.1007/s12640-012-9337-4 CrossRefPubMedGoogle Scholar
  48. Pandya U, Saini MK, Jin GF, Awasthi S, Godley BF, Awasthi YC (2000) Dietary curcumin prevents ocular toxicity of naphthalene in rats. Toxicol Lett 115:195–204.  https://doi.org/10.1016/S0378-4274(00)00191-0 CrossRefPubMedGoogle Scholar
  49. Pavkovic M, Riefke B, Ellinger-Ziegelbauer H (2014) Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology 324:147–157.  https://doi.org/10.1016/j.tox.2014.05.005 CrossRefPubMedGoogle Scholar
  50. Pezeshki Z, Nematbakhsh M, Mazaheri S et al (2012) Estrogen abolishes protective effect of erythropoietin against cisplatin-induced nephrotoxicity in ovariectomized rats. ISRN Oncol 2012.  https://doi.org/10.5402/2012/890310
  51. Pezeshki Z, Khosravi A, Nekuei M, Khoshnood S, Zandi E, Eslamian M, Talebi A, Emami SNED, Nematbakhsh M (2017) Time course of cisplatin-induced nephrotoxicity and hepatotoxicity. J Nephropathol 6:163–167.  https://doi.org/10.15171/jnp.2017.28 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Prabhu VV, Kannan N, Guruvayoorappan C (2013) 1,2-Diazole prevents cisplatin-induced Nephrotoxicity in experimental rats. Pharmacol Res 65(4):980–990.  https://doi.org/10.1016/S1734-1140(13)71079-X Google Scholar
  53. Rastghalam R, Nematbakhsh M, Bahadorani M, Eshraghi-Jazi F, Talebi A, Moeini M, Ashrafi F, Shirdavani S (2014) Angiotensin type-1 receptor blockade may not protect kidney against cisplatin-induced nephrotoxicity in rats. ISRN Nephrol 2014:1–7.  https://doi.org/10.1155/2014/479645 CrossRefGoogle Scholar
  54. Rezaee R, Momtazi AA, Monemi A, Sahebkar A (2017) Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 117:218–227.  https://doi.org/10.1016/j.phrs.2016.12.037 CrossRefPubMedGoogle Scholar
  55. Sahin K, Orhan C, Tuzcu M, Muqbil I, Sahin N, Gencoglu H, Guler O, Padhye SB, Sarkar FH, Mohammad RM (2014) Comparative in vivo evaluations of curcumin and its analog difluorinated curcumin against cisplatin-induced nephrotoxicity. Biol Trace Elem Res 157:156–163.  https://doi.org/10.1007/s12011-014-9886-x CrossRefPubMedGoogle Scholar
  56. Sánchez-Hidalgo M, Guerrero JM, Villegas I, Packham G, de la Lastra C (2012) Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem 19:3805–3821.  https://doi.org/10.2174/092986712801661013 CrossRefPubMedGoogle Scholar
  57. Selli J, Unal D, Mercantepe F, Akaras N, Kabayel R, Unal B, Atilay H (2015a) Protective effects of beta glucan in brain tissues of post-menopausal rats: a histochemical and ultra-structural study. Gynecol Endocrinol 32:3590–3239.  https://doi.org/10.3109/09513590.2015.1110139 Google Scholar
  58. Selli J, Unal D, Mercantepe F, Akaras N, Kabayel R, Unal B, Atilay H (2015b) Protective effects of beta glucan in brain tissues of post-menopausal rats: a histochemical and ultra-structural study. Gynecol Endocrinol 3590:1–19.  https://doi.org/10.3109/09513590.2015.1110139 Google Scholar
  59. Sener G, Satiroglu H, Kabasakal L et al (2000) The protective effect of melatonin on cisplatin nephrotoxicity. Fundam Clin Pharmacol 14:553–560CrossRefPubMedGoogle Scholar
  60. Shaki F, Ashari S, Ahangar N (2016) Melatonin can attenuate ciprofloxacin induced nephrotoxicity: involvement of nitric oxide and TNF-α. Biomed Pharmacother 84:1172–1178.  https://doi.org/10.1016/j.biopha.2016.10.053 CrossRefPubMedGoogle Scholar
  61. Sharp CN, Siskind LJ (2017) Developing better mouse models to study cisplatin-induced kidney injury. Am J Physiol Ren Physiol 313(4):F835–F841.  https://doi.org/10.1152/ajprenal.00285.2017 CrossRefGoogle Scholar
  62. Sharp CN, Doll MA, Dupre TV, Shah PP, Subathra M, Siow D, Arteel GE, Megyesi J, Beverly LJ, Siskind LJ (2016) Repeated administration of low-dose cisplatin in mice induces fibrosis. Am J Physiol Ren Physiol 310:F560–F568.  https://doi.org/10.1152/ajprenal.00512.2015 CrossRefGoogle Scholar
  63. Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2017) Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci 11:1–12.  https://doi.org/10.3389/fncel.2017.00338 CrossRefGoogle Scholar
  64. Sreejayan N, MNA R, Priyadarsini KI, Devasagayam TPA (1997) Inhibition of radiation-induced lipid peroxidation by curcumin. Int J Pharm 151:127–130CrossRefGoogle Scholar
  65. Sung MJ, Kim DH, Jung YJ, Kang KP, Lee AS, Lee S, Kim W, Davaatseren M, Hwang JT, Kim HJ, Kim MS, Kwon DY, Park SK (2008) Genistein protects the kidney from cisplatin-induced injury. Kidney Int 74:1538–1547.  https://doi.org/10.1038/ki.2008.409 CrossRefPubMedGoogle Scholar
  66. Topcu-Tarladacalisir Y, Sapmaz-Metin M, Karaca T (2016) Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren Fail 38:1741–1748.  https://doi.org/10.1080/0886022X.2016.1229996 CrossRefPubMedGoogle Scholar
  67. Trujillo J, Molina-Jijón E, Medina-Campos ON, Rodríguez-Muñoz R, Reyes JL, Loredo ML, Barrera-Oviedo D, Pinzón E, Rodríguez-Rangel DS, Pedraza-Chaverri J (2016) Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food Funct 7:279–293.  https://doi.org/10.1039/C5FO00624D CrossRefPubMedGoogle Scholar
  68. Tumkaya L, Kalkan Y, Bas O et al (2016) The regenerative effects of electromagnetic field on spinal cord injury. Electromagn Biol Med 8378:1–14.  https://doi.org/10.3109/15368378.2016.1160408 Google Scholar
  69. Uzunoglu S, Karagol H, Ozpuyan F, Cosar R, Cicin I, Yurutcaloglu V, Denizli B, Tanriverdi Ö, Sut N, Kocak Z (2011) Protective effect of l-carnitine versus amifostine against cisplatin-induced nephrotoxicity in rats. Med Oncol 28:690–696.  https://doi.org/10.1007/s12032-010-9746-2 CrossRefGoogle Scholar
  70. Varatharajan R, Sattar MZA, Chung I, Abdulla MA, Kassim NM, Abdullah NA (2013) Antioxidant and pro-oxidant effects of oil palm (Elaeis guineensis) leaves extract in experimental diabetic nephropathy: a duration-dependent outcome. BMC Complement Altern Med 13:242.  https://doi.org/10.1186/1472-6882-13-242 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wang F, Liu S, Shen Y et al (2014) Protective effects of N-acetylcysteine on cisplatin-induced oxidative stress and DNA damage in HepG2 cells. Exp Ther Med 8:1939–1945.  https://doi.org/10.3892/etm.2014.2019 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Waseem M, Kaushik P, Parvez S (2013) Mitochondria-mediated mitigatory role of curcumin in cisplatin-induced nephrotoxicity. Cell Biochem Funct 31:678–684.  https://doi.org/10.1002/cbf.2955 CrossRefPubMedGoogle Scholar
  73. WHO (2008) World cancer report 2008. LyonGoogle Scholar
  74. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, Chen X, Han J (2015) A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol 26:2647–2658.  https://doi.org/10.1681/ASN.2014080741 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yang Y, Liu H, Liu F, Dong Z (2014) Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol 88:1249–1256.  https://doi.org/10.1007/s00204-014-1239-1 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yao XIN, Panichpisal K, Kurtzman N (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124CrossRefPubMedGoogle Scholar
  77. Yousef JM, Chen G, Hill PA, Nation RL, Li J (2011) Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrob Agents Chemother 55:4044–4049.  https://doi.org/10.1128/AAC.00328-11 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang W, Zhang S, Zhang M, Yang L, Cheng B, Li J, Shan A (2018) Individual and combined effects of fusarium toxins on apoptosis in PK15 cells and the protective role of N-acetylcysteine. Food Chem Toxicol 111:27–43.  https://doi.org/10.1016/j.fct.2017.10.057 CrossRefPubMedGoogle Scholar
  79. Zirak MR, Rahimian R, Ghazi-Khansari M, Abbasi A, Razmi A, Ejtemaei Mehr S, Mousavizadeh K, Dehpour AR (2014) Tropisetron attenuates cisplatin-induced nephrotoxicity in mice. Eur J Pharmacol 738:222–229.  https://doi.org/10.1016/j.ejphar.2014.05.050 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Filiz Mercantepe
    • 1
  • Tolga Mercantepe
    • 2
  • Atilla Topcu
    • 3
  • Adnan Yılmaz
    • 4
  • Levent Tumkaya
    • 2
  1. 1.Department of Internal Medicine, Faculty of MedicineRecep Tayyip Erdogan UniversityRizeTurkey
  2. 2.Department of Histology and Embryology, Faculty of MedicineRecep Tayyip Erdogan UniversityRizeTurkey
  3. 3.Department of Pharmacology, Faculty of MedicineRecep Tayyip Erdogan UniversityRizeTurkey
  4. 4.Department of Biochemistry, Faculty of MedicineRecep Tayyip Erdogan UniversityRizeTurkey

Personalised recommendations