Suppression of glutathione S-transferases potentiates the cytotoxic effect of phenethyl isothiocyanate in cholangiocarcinoma cells

  • Ornanong Tusskorn
  • Tueanjai Khunluck
  • Auemduan Prawan
  • Laddawan Senggunprai
  • Upa Kukongviriyapan
  • Veerapol Kukongviriyapan
Original Article


Phenethyl isothiocyanate (PEITC) is a potential cancer prevention agent that is found in cruciferous vegetables. Previous studies have shown that the effect of PEITC-induced cell death declines rapidly after administration. The metabolic fate of PEITC is modulated by glutathione S-transferases (GST). In this study, we investigated whether GST activity modulates PEITC-induced cytotoxicity on cholangiocarcinoma (CCA) cells. The sensitivity of KKU-M214 and KKU-100 cells to PEITC was associated with GST activity. Two GST inhibitors, ethacrynic acid (EA) and cibacron blue, potentiated the cytotoxic effect of PEITC in CCA cells. PEITC-induced glutathione (GSH) depletion and redox stress, whereas EA itself or in combination with PEITC did not alter GSH redox status. The enhanced cytotoxic effect of EA may be due to inhibition of GST activity. This idea was validated by using siRNA directed against GSTP1 mRNA in KKU-M214 cells, and GSTP1 and GSTT1 mRNA in KKU-100 cells. These GST isoforms were abundantly expressed in the cell lines. Knockdown of GSTs in CCA cell lines potentiated the cytotoxic effect of PEITC. The present study shows that the antitumor effect of PEITC was potentiated by the suppression of GST activity. The inhibition of GST could be a crucial strategy to potentiate chemotherapeutic effect of PEITC on CCA.


Phenethylisothiocyanate Chemoprevention Cholangiocarcinoma Glutathione S-transferases 





Phenethyl isothiocyanate




Glutathione disulfide


Glutathione S-transferases


Sulphorhodamine B



We would like to acknowledge Dr. Justin Thomas Reese for editing the manuscript via Publication Clinic KKU.

Funding information

This work was supported by grant-in-aid from Khon Kaen University and National Research Council of Thailand, Cholangiocarcinoma Research Institute, Khon Kaen University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RI, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJ, Alvaro D (2016) Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 13:261–280CrossRefPubMedGoogle Scholar
  2. Buranrat B, Prawan A, Kukongviriyapan U, Kongpetch S, Kukongviriyapan V (2010) Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells. World J Gastroenterol 16:2362–2370CrossRefPubMedPubMedCentralGoogle Scholar
  3. Buranrat B, Prawan A, Sripa B, Kukongviriyapan V (2007) Inflammatory cytokines suppress arylamine N-acetyltransferase 1 in cholangiocarcinoma cells. World J Gastroenterol 16:6219–6225Google Scholar
  4. Chan JM, Wang F, Holly EA (2005) Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco bay area. Cancer Epidemiol Biomark Prev 14:2093–2097CrossRefGoogle Scholar
  5. Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12:87–97CrossRefPubMedGoogle Scholar
  6. Chiao JW, Wu H, Ramaswamy G, Conaway CC, Chung FL, Wang L, Liu D (2004) Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis 25:1403–1408CrossRefPubMedGoogle Scholar
  7. Chung FL, Morse MA, Eklind KI, Lewis J (1992) Quantitation of human uptake of the anticarcinogen phenethyl isothiocyanate after a watercress meal. Cancer Epidemiol Biomark Prev 1:383–388Google Scholar
  8. Dyba M, Wang A, Noone AM, Goerlitz D, Shields P, Zheng YL, Rivlin R, Chung FL (2010) Metabolism of isothiocyanates in individuals with positive and null GSTT1 and M1 genotypes after drinking watercress juice. Clin Nutr 29:813–818CrossRefPubMedPubMedCentralGoogle Scholar
  9. Griswold KE, Aiyappan NS, Iverson BL, Georgiou G (2006) The evolution of catalytic efficiency and substrate promiscuity in human theta class 1-1 glutathione transferase. J Mol Biol 364:400–410CrossRefPubMedPubMedCentralGoogle Scholar
  10. Honjo S, Srivatanakul P, Sriplung H, Kikukawa H, Hanai S, Uchida K, Todoroki T, Jedpiyawongse A, Kittiwatanachot P, Sripa B, Deerasamee S, Miwa M (2005) Genetic and environmental determinants of risk for cholangiocarcinoma via Opisthorchis viverrini in a densely infested area in Nakhon Phanom, northeast Thailand. Int J Cancer 117:854–860CrossRefPubMedGoogle Scholar
  11. Keen JH, Jakoby WB (1978) Glutathione transferases. Catalysis of nucleophilic reactions of glutathione. J Biol Chem 253:5654–5657PubMedGoogle Scholar
  12. Khor TO, Cheung WK, Prawan A, Reddy BS, Kong AN (2008) Chemoprevention of familial adenomatous polyposis in Apc(Min/+) mice by phenethyl isothiocyanate (PEITC). Mol Carcinog 47:321–325CrossRefPubMedGoogle Scholar
  13. Kukongviriyapan V (2012) Genetic polymorphism of drug metabolizing enzymes in association with risk of bile duct cancer. Asian Pac J Cancer Prev 13(Suppl):7–15PubMedGoogle Scholar
  14. Lam TK, Ruczinski I, Helzlsouer KJ, Shugart YY, Caulfield LE, Alberg AJ (2010) Cruciferous vegetable intake and lung cancer risk: a nested case-control study matched on cigarette smoking. Cancer Epidemiol Biomark Prev 19:2534–2540CrossRefGoogle Scholar
  15. London SJ, Yuan JM, Chung FL, Gao YT, Coetzee GA, Ross RK, Yu MC (2000) Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 356:724–729CrossRefPubMedGoogle Scholar
  16. Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jornvall H (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A 82:7202–7206CrossRefPubMedPubMedCentralGoogle Scholar
  17. Meyer DJ, Crease DJ, Ketterer B (1995) Forward and reverse catalysis and product sequestration by human glutathione S-transferases in the reaction of GSH with dietary aralkyl isothiocyanates. Biochem J 306(Pt 2):565–569CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mi L, Di Pasqua AJ, Chung FL (2011) Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 32:1405–1413CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nakajima T, Takayama T, Miyanishi K, Nobuoka A, Hayashi T, Abe T, Kato J, Sakon K, Naniwa Y, Tanabe H, Niitsu Y (2003) Reversal of multiple drug resistance in cholangiocarcinoma by the glutathione S-transferase-pi-specific inhibitor O1-hexadecyl-gamma-glutamyl-S-benzylcysteinyl-D-phenylglycine ethylester. J Pharmacol Exp Ther 306:861–869CrossRefPubMedGoogle Scholar
  20. Niwa Y, Hirose K, Nakanishi T, Nawa A, Kuzuya K, Tajima K, Hamajima N (2005) Association of the NAD(P)H: quinone oxidoreductase C609T polymorphism and the risk of cervical cancer in Japanese subjects. Gynecol Oncol 96:423–429CrossRefPubMedGoogle Scholar
  21. Patel T (2011) Cholangiocarcinoma--controversies and challenges. Nat Rev Gastroenterol Hepatol 8:189–200CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ploemen JH, van Ommen B, van Bladeren PJ (1990) Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 40:1631–1635CrossRefPubMedGoogle Scholar
  23. Rhodes T, Twentyman PR (1992) A study of ethacrynic acid as a potential modifier of melphalan and cisplatin sensitivity in human lung cancer parental and drug-resistant cell lines. Br J Cancer 65:684–690CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shokeer A, Mannervik B (2010) Residue 234 is a master switch of the alternative-substrate activity profile of human and rodent theta class glutathione transferase T1-1. Biochim Biophys Acta 1800:466–473CrossRefPubMedGoogle Scholar
  25. Sripa B, Leungwattanawanit S, Nitta T, Wongkham C, Bhudhisawasdi V, Puapairoj A, Sripa C, Miwa M (2005) Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol 11:3392–3397CrossRefPubMedPubMedCentralGoogle Scholar
  26. Stavrovskaya AA (2000) Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc) 65:95–106Google Scholar
  27. Suphim B, Prawan A, Kukongviriyapan U, Kongpetch S, Buranrat B, Kukongviriyapan V (2010) Redox modulation and human bile duct cancer inhibition by curcumin. Food Chem Toxicol 48:2265–2272CrossRefPubMedGoogle Scholar
  28. Tahir MK, Guthenberg C, Mannervik B (1985) Inhibitors for distinction of three types of human glutathione transferase. FEBS Lett 181:249–252CrossRefPubMedGoogle Scholar
  29. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375CrossRefPubMedGoogle Scholar
  30. Tusskorn O, Prawan A, Senggunprai L, Kukongviriyapan U, Kukongviriyapan V (2013a) Phenethyl isothiocyanate induces apoptosis of cholangiocarcinoma cells through interruption of glutathione and mitochondrial pathway. Naunyn Schmiedeberg's Arch Pharmacol 386:1009–1016CrossRefGoogle Scholar
  31. Tusskorn O, Senggunprai L, Prawan A, Kukongviriyapan U, Kukongviriyapan V (2013b) Phenethyl isothiocyanate induces calcium mobilization and mitochondrial cell death pathway in cholangiocarcinoma KKU-M214 cells. BMC Cancer 13:571CrossRefPubMedPubMedCentralGoogle Scholar
  32. Verlingue L, Malka D, Allorant A, Massard C, Ferte C, Lacroix L, Rouleau E, Auger N, Ngo M, Nicotra C, De Baere T, Tselikas L, Ba B, Michiels S, Scoazec JY, Boige V, Ducreux M, Soria JC, Hollebecque A (2017) Precision medicine for patients with advanced biliary tract cancers: an effective strategy within the prospective MOSCATO-01 trial. Eur J Cancer 87:122–130CrossRefPubMedGoogle Scholar
  33. Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG (2005) Characterization of the omega class of glutathione transferases. Methods Enzymol 401:78–99CrossRefPubMedGoogle Scholar
  34. Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, Kim SH, Hahm ER, Normolle D, Van Houten B, Singh SV (2010) Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 285:26558–26569CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yang CM, Carlson GP (1990) Glutathione conjugation in the isolated perfused rabbit lung: the effects of carbon monoxide, buthionine sulfoximine and cibacron blue. Toxicol Lett 52:47–53CrossRefPubMedGoogle Scholar
  36. Zhang Y (2012) The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 33:2–9CrossRefPubMedGoogle Scholar
  37. Zhang Y, Kolm RH, Mannervik B, Talalay P (1995) Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochem Biophys Res Commun 206:748–755CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ornanong Tusskorn
    • 1
    • 2
  • Tueanjai Khunluck
    • 1
  • Auemduan Prawan
    • 1
    • 3
  • Laddawan Senggunprai
    • 1
    • 3
  • Upa Kukongviriyapan
    • 4
  • Veerapol Kukongviriyapan
    • 1
    • 3
  1. 1.Department of Pharmacology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  2. 2.Chulabhorn International College of MedicineThammasat UniversityKhlong LuangThailand
  3. 3.Cholangiocarcinoma Research InstituteKhon Kaen UniversityKhon KaenThailand
  4. 4.Department of Physiology Faculty of MedicineKhon Kaen UniversityKhon KaenThailand

Personalised recommendations